首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioaccessibility of trace metals originating from urban particulate matter was assessed in a worst case scenario to evaluate the uptake and thus the hazardous potential of these metals via gastric juice. Sampling was performed over a period of about two months at the Getreidemarkt in downtown Vienna. Concentrations of the assayed trace metals (Ti, Cr, Mn, Co, Ni, Cu, Zn, Mo, Ag, Cd, Sn, Sb, Tl and Pb) were determined in PM2.5 and PM10 samples by ICP-MS. The metal concentrations in sampled air were in the low picogram to high nanogram per cubic metre range. The concentrations in PM2.5 samples were generally lower than those in PM10 samples. The average daily intake of these metals by inhalation for a healthy adult was estimated to be in the range of <1 ng (Tl) to >1,000 ng (Zn). To estimate the accessibility of the inhaled and subsequently ingested metals (i.e. after lung clearance had taken place) in the size range from 2.5- to 10-μm aerodynamic equivalent diameter, a batch-extraction with synthetic gastric juice was performed. The data were used to calculate the bioaccessibility of the investigated trace metals. Extractable fractions ranged from 2.10% (Ti in PM2.5) to 91.0% (Cd in PM2.5), thus yielding bioaccessible fractions (PM2.5–10) from 0.16 ng (Ag) to 178 ng (Cu).  相似文献   

2.
Thermolysis of double complex salt [Pd(NH3)4][AuCl4]2 has been studied in helium atmosphere from ambient to 350 °C. The XAFS of Pd K and Au L3 edges and thermogravimetry measurements have been carried out to characterize the intermediates and the final product. In the temperature range 115–160 °C the complex is decomposed to form Pd(NH3)2Cl2 and AuCl4−x N x species with x ranging from 2 to 3. Subsequent heating of the intermediate up to 300 °C leads to the total loss of NH3. The Au–Cl and Au–Au bonds form the local environment of Au at the stage of decomposition while only four chlorine atoms are around Pd. At the temperature of 330 °C the Au and Pd nanoparticles as well as residues of palladium chloride are detected. The final product consists of separated Au and Pd nanoparticles.  相似文献   

3.
Three new mixed tellurides of nickel and group 13–14 metals Ni3−δMTe2 (M = Sn, In, Ga) were prepared by high-temperature ampoule synthesis and studied by powder X-ray diffraction analysis. The compound Ni3−δSnTe2 was also studied by single crystal X-ray diffraction analysis. The structural model of this phase and two analogs was described as consisting of layers with nickel-main group metal bonds confined from the above by tellurium atoms. The van der Waals gap formed through contacts between the tellurium atoms of neighboring layers is partially occupied by nickel atoms. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1879–1881, October, 2007.  相似文献   

4.
Electrolytes of 1 M blend salts (LiPF6 and tetraethylammonium tetrafluoroborate, Et4NBF4) have been investigated in supercapacitor battery system with composite LiMn2O4 and activated carbon (AC) cathode, and Li4Ti5O12 anode. The results obtained with the blend salts electrolytes are compared with those obtained with cells build using standard 1 M LiPF6 dissolved in ethylene carbonate + dimethyl carbonate + ethyl (methyl) carbonate (EC + DMC + EMC, 1:1:1 wt.%) as electrolyte. It is found that the blend salts electrolyte performs better on both electrochemical and galvanostatic cycling stability, especially cycled at 4 C rate. When the concentration of LiPF6 is 0.2 M and Et4NBF4 is 0.8 M, the capacity retention of the battery is 96.23% at 4 C rate after 5,000 cycles, much higher than that of the battery with standard 1 M LiPF6 electrolyte, which is only 62.35%. These results demonstrate that the blend salts electrolyte can improve the galvanostatic cycling stability of the supercapacity battery. Electrolyte of 0.2 M LiPF6 + 0.8 M Et4NBF4 in EC + DMC + EMC (1:1:1 wt.%) is a promising electrolyte for (LiMn2O4 + AC)/Li4Ti5O12.  相似文献   

5.
Comparative quantum chemical calculations of structural parameters, chemical shifts of 11B NMR spectra, and atomic charges in 10-vertex boron hydride anions [1-CB9H10] and [1-B10H9N2] were performed using the restricted Hartree-Fock method with the 6-31++G(D,P) basis set. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1853–1855, September, 2007.  相似文献   

6.
Perovskite phases Ba3In2ZrO8 and Ba4In2Zr2O11 with the nominal concentration of structural oxygen vacancies 1/9 and 1/12, respectively, were synthesized by solid-phase and solution methods. X-ray diffraction showed cubic symmetry of both phases with the unit cell parameter a = 0.4193(2) and 0.4204(3) nm, respectively. The absence of superstructural lines resulted in the conclusion on statistical arrangement of oxygen vacancies. Thermogravimetry and mass spectrometry proved that both phases can reversibly absorb water from gas phase (pH2O = 2 × 10−2 atm) with observed correlation between the concentration of oxygen vacancies and amount of absorbed water. The total water amount was up to 0.9 mol per formula unit or, if recalculated for perovskite unit ABO3, 0.3 and 0.23 mol H2O, respectively. The temperature curves of coductivity in the atmosphere with various partial water vapor pressures (pH2O = 3 × 10−5 and 2 × 10−2 atm) showed significantly higher conductivity and lower activation energy (0.52 eV) in humid atmosphere due to proton transfer. The proton conductivity is up to 5 × 10−4 Ohm−1 cm−1 at 300°C for Ba3In2ZrO8 specimen. IR spectrometry showed that protons in the structure exist primarily in OH-groups.  相似文献   

7.
A differential pulse voltammetric (DPV) method for the determination of bromate in drinking water, after pre-concentration on γ-Al2O3, is proposed. The reduction peak of bromate has been observed at the potential E p -−1.6 V in an ammonia buffer as a supporting electrolyte. The method has been successfully applied to determine a bromate concentration of 2.5 μg·l−1 in drinking water (RSD=6.1%, n=7). A sample pre-treatment with a column filled with mixed cation-exchange resin in Ag, Ba and H forms was needed before pre-concentration of bromate on alumina.  相似文献   

8.
A method for the synthesis of the silver(I) complex with the closo-decaborate anion and triphenylphosphine [Ag2(Ph3P)2B10H10] n was developed and the structure of this complex was studied. The polymeric chain of the complex is formed with participation of Ag(I) atoms, which coordinate the B10H102− anions through the apical (B(1)–B(2), B(9)–B(10)) and equatorial (B(3)–B(6), B(5)–B(8)) edges, the metalligand bonding occurring through three-center two-electron bonds (MHB). The P atoms of two triphenylphosphine molecules are also incorporated in the inner coordination sphere of the metal: the CN of the silver atom is 4 + 1.  相似文献   

9.
Energy differences, ΔX s−t (X = E, H, and G) (ΔX s−t = X(singlet) − X(triplet)) between singlet (s) and triplet (t) states of C12H8M were calculated at B3LYP/6-311+G*. The DFT calculations indicated that the ΔG s−t between singlet (s) and triplet (t) states of C12H8M were increased from M = C to M = Pb. The ΔG s−t of C12H8M was compared with its analogue C4H4M through replacement of heavy atoms from M = C to M = Pb. Configurations of the electrons in orbitals (σ2 or π2) for the singlet state of C12H8M were discussed.  相似文献   

10.
The electrolyses of solutions of bismuth oxide and tellurium oxide in nitric acid with molar ratios of Bi:Te=3:3–4:3 lead to cathodic deposits of films of bismuth telluride (Bi2Te3), an n-type semiconductor. Current densities of 2–5 mA/cm2 were applied. Voltammetric investigations showed that Bi2Te3 deposition occurred at potentials more negative than −0.125 V (Ag/AgCl, 3 M KCl). The deposit was identified as bismuth telluride (γ-phase) by X-ray analysis. Hall-effect measurements verified the n-type semiconducting behaviour. The films can be deposited in microstructures for thermoelectric microdevices like thermoelectric batteries or thermoelectric sensors.  相似文献   

11.
Due to technological advancement, environment suffers from untreated toxic heavy metal bearing effluent coming from different industries. Chromium (VI) is one of those heavy metals having adverse impact on ecological balance, human, and plant health because of its carcinogenic properties. Biosorption is presented as an alternative to traditional technologies which are costly and inefficient for treatment of industrial wastes containing low amount of heavy metals. In this study, bioremediation of Cr (VI) ions by immobilized Bacillus cereus M1 16 was investigated in a laboratory scale packed bed up-flow column reactor. The effect of important parameters, such as the inlet flow rate, influent concentration, and effective bed height, has been studied. External mass transfer, surface adsorption, and intrabead mass transfer were also studied to conclude the rate limiting step for removal of Cr (VI) and to determine the process parameters which are important for biosorption optimization. The external mass transfer coefficient was calculated at different flow rates (6.51 × 10−2 to 7.58 × 10−2 cm/min). Using the model, the surface adsorption rate constant (k ad) and the intrabead mass transfer coefficient (k i) were predicted as 0.0267 × 10−3 and 0.7465 × 10−3 l/g/min, respectively. Both are much lower than the external mass transfer coefficient (k e). The surface adsorption phenomenon is acting as the rate-limiting step due to its high resistance for removal of Cr (VI).  相似文献   

12.
Mineral contents of strawberry, collected from different farms of Islamabad were analysed by semi-absolute k 0-instrumental neutron activation analysis and atomic absorption spectrophotometry. The samples were irradiated at two research reactors located in Pakistan Institute of Nuclear Science & Technology (PINSTECH), Islamabad. The analytical methodologies were validated by analysing reference materials, IAEA-336 (lichen) and IAEA-V-10 (hay powder). In all the samples, a total of 26 elements were quantified, among them 16 elements (Ca, Cd, Cl, Co, Cr, Cs, Fe, K, Mg, Mn, Na, Pb, Ru, Sc, Sr and Zn) were found in all the samples. The determined elemental concentrations in strawberry were compared with the reported values from other countries. In comparison with the mineral contents of other fruits, strawberry stands best source of Mn and the second most important source of K after banana. Intake of trace metals through this source was calculated and it was found that strawberry provides Mn (1.95–3.68 mg/kg), Cr (19.2–46.3 × 10−3 mg/kg), Fe (3.45–8.72 mg/kg), K (1,520–1,670 mg/kg) and Mg (100–220 mg/kg), which forms 26, 19, 14, 7 and 7% of the recommended dietary allowances for the respective metals. The daily intake of Cd and Pb were compared with the provisional tolerable weekly intake defined by FAO/WHO.  相似文献   

13.
A novel electrochemical sensor based on LaNi0.5Ti0.5O3/CoFe2O4 nanoparticle-modified electrode (LNT–CFO/GCE) for sensitive determination of paracetamol (PAR) was presented. Experimental conditions such as the concentration of LNT–CFO, pH value, and applied potential were investigated. Under the optimum conditions, the electrochemical performances of LNT–CFO/GCE have been researched on the oxidation of PAR. The electrochemical behaviors of PAR on LNT–CFO/GCE were investigated by cyclic voltammetry. The results showed that LNT–CFO/GCE exhibited excellent promotion to the oxidation of PAR. The over-potential of PAR decreased significantly on the modified electrode compared with that on bare GCE. Furthermore, the sensor exhibits good reproducibility, stability, and selectivity in PAR determination. Linear response was obtained in the range of 0.5 to 901 μM with a detection limit of 0.19 μM for PAR.  相似文献   

14.
The complexes trans-[Ni(4-MP)2(NCS)2]·MeCN (1) and trans-[Ni(3-MP)2(NCS)2] (2) (4-MP = tri(4-methylphenyl)phosphine, 3-MP = tri(3-methylphenyl)phosphine) were prepared and characterized by IR, UV–visible, NMR spectra, CV, TGA and single crystal X-ray crystallography. Both the complexes have planar geometry and are diamagnetic. The Ni–P distances in both complexes are relatively short as a result of strong back donation from nickel to phosphorus. The phenyl rings in the 3-MP analogue (2) show increased pitching with reference to the plane formed by the ipso carbons due to increased steric effects. For complex (2), the N–Ni–N and P–Ni–P angles are significantly lower than the almost linear N–Ni–N and N–Ni–P angles observed for both complex (1) and trans-[Ni(PPh3)2(NCS)2]. This observation indicates that the 3-methylphosphine ligand forces complex (2) to distort towards a tetrahedral geometry. IR spectra of both complexes show strong bands around 2,090 cm−1 due to N-coordinated thiocyanate, while the electronic spectra contain d–d transitions around 452 nm. Cyclic voltammograms show that the irreversible one-electron reduction potentials increase in the following order: trans- [Ni(PPh3)2(NCS)2] < trans- [Ni(3-MP)2(NCS)2] < trans-[Ni(4-MP)2(NCS)2], revealing the electron releasing effect of the methyl groups. The planar complexes exhibit interallogony in coordinating solvents.  相似文献   

15.
The comparative study of the role of binary oxide support on catalyst physico-chemical properties and performance in methanol synthesis were undertaken and the spinel like type structures (ZnAl2O4, FeAlO3, CrAl3O6) were prepared and used as the supports for 5% metal (Cu, Ag, Au, Ru) dispersed catalysts. The monometallic 5% Cu/support and bimetallic 1% Au (or 1% Ru)-5% Cu/support (Al2O3, ZnAl2O4, FeAlO3, CrAl3O6) catalysts were investigated by BET, XRD and TPR methods. Activity tests in methanol synthesis of CO and CO2 mixture hydrogenation were carried out. The order of Cu/support catalysts activity in methanol synthesis: CrAl3O{ia6} > FeAlO3 > ZnAl2O4 is conditioned by their reducibility in hydrogen at low temperature. Gold appeared more efficient than ruthenium in promotion of Cu/support catalysts. Published in Russian in Kinetika i Kataliz, 2009, Vol. 50, No. 2, pp. 242–248. The article is published in the original.  相似文献   

16.
Maghemite nano-particles were synthesized by a solid-state chemical reaction for its highly selective use as, cyclotron-produced, 109Cd (462.9 days) purification method of choice. 109Cd radiochemical separation starts with Ag activities precipitated with HCl 0.0015 M followed by, on a second step, 109Cd separation from Cu carrier and 65Zn (243.8 days) using Ca (NO3)2 0.01 M. Experimental parameters such, pH and sorbent concentration, on 109Cd extraction efficiency were investigated. Phase morphology, nanostructure and size of nano-particles were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). A 10–20 nm average grain size was derived from XRD line broadening and SEM data. Heat treatment on Fe3+:Fe2+ ratios equal to 2:1, produced powders, resulting in tetragonal (maghemite) structure at 300 °C and rhombohedra (hematite) at 600 °C. 109Cd chemical and radionuclidic purity were determined by ICP-AES and HPGe detector gamma-ray spectrometry. The overall recovery and radionuclide purity were 80.0% from obtained 129.63 kBq/C MeV (70 kBq/μAh) initial activity and 91.4%, respectively.  相似文献   

17.
Six new title compounds in the form of Cd(cyclobutylamine)2M′(CN)4 · 2G (M′ = Cd or Hg; G = benzene, 1,2-dichlorobenzene, or 1,3-dichlorobenzene) have been prepared in powder form. Their spectral data were found to be consistent with the structure of the Hofmann-T d -type clathrates.  相似文献   

18.
Homogeneous manganocolumbite (MnNb2O6) was synthesized from Nb2O5 and MnO oxides. Powder sample was orthorhombic with unit cell parameters: α = 0.5766 nm, b = 1.4439 nm, c = 0.5085 nm and V = 0.4234 nm3. Heat capacity over the temperature range of 313–1253 K was measured in an inert atmosphere with combined thermogravimetry and calorimetry using NETZSCH STA 449C Jupiter thermoanalyzer. Melting point was 1767 ± 3 K, enthalpy of melting was 144 ± 4 kJ mol−1. Experimental heat capacity of MnNb2O6 is fitted to polynomial C pm = 221.46 + 3.03 · 10−3 T + −39.79 · 105 T −2 + 40.59 · 10−6 T 2.  相似文献   

19.
Heteropoly acid (HPA) H8(PW11TiO39)2xH2O (I) is synthesized by three different ways and studied by chemical analysis, potentiometric titration, mass-spectrometry, IR, 31P, 183W, and 17O NMR spectroscopy, thermogravimetry, and transmission electron microscopy. Anion I consists of two subparticles of the Keggin structure bridged by Ti-O-Ti. The dimeric anion exists in HPA aqueous solutions at [I] > 0.02 M. At pH > 0.6 it splits to a [PW11TiO40]5− monomer stable up to pH ∼ 6. When heated (150–400)°C, I splits into H3PW12O40 and, apparently, H3PW10Ti2O38 without phase separation. Thermolysis products are soluble and when dissolved in water turn again into I. Complete decomposition of I to oxides occurs at ∼450°C.  相似文献   

20.
The electropolymerization of trans-[RuCl2(vpy)4] (vpy=4-vinylpyridine) on Au or Pt electrodes was studied by cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM) technique, and Raman spectroscopy. Cyclic voltammetry of the monomer at a microelectrode shows the typical Ru(III/II) and Ru(IV/III) waves, together with the vinyl reduction waves at −1.5 and −2.45 V and adsorption wave at −0.8 V. Electrodeposition on EQCM technique performed under potential cycling between −0.9 and −2.0 V revealed that the polymerization proceeded well in advance of the vinyl reduction waves. At potentials more positive than −0.9 V, soluble oligomers were deposited irreversibly on the electrode during the oxidative sweep. The film also showed reversible mass changes due to the oxidation and accompanying ingress of charge-balancing anions and solvent into the film. In contrast, potentiostatic growth of the polymer at −1.6 V was slower because the oligomeric material was lost completely from the electrode. Unreacted vinyl groups were detected by in situ Raman spectroscopy for films grown at −0.7, −0.9, and −1.6 V but were absent when the polymerization was carried out at −2.9 V vs Ag/Ag+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号