首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate new paths to supermassive black hole formation by considering the general relativistic evolution of a differentially rotating polytrope with a toroidal shape. We find that this polytrope is unstable to nonaxisymmetric modes, which leads to a fragmentation into self-gravitating, collapsing components. In the case of one such fragment, we apply a simplified adaptive mesh refinement technique to follow the evolution to the formation of an apparent horizon centered on the fragment. This is the first study of the onset of nonaxisymmetric dynamical instabilities of supermassive stars in full general relativity.  相似文献   

2.
Supermassive black holes exist in the centers of galaxies, including Milky Way, but there is no compelling theory of their formation. Furthermore, observations of quasars imply that supermassive black holes have already existed at some very high redshifts, suggesting the possibility of their primordial origin. In a class of well-motivated models, inflationary epoch could include two or more periods of inflation dominated by different scalar fields. The transition between such periods of inflation could enhance the spectrum of density perturbations on some specific scale, which could lead to formation of primordial black holes with a very narrow range of masses of the order of 105 solar masses. These primordial black holes could have provided the requisite seeds for the observed population of supermassive black holes.  相似文献   

3.
4.
We consider boson stars and black holes in scalar electrodynamics with a V-shaped scalar potential. The boson stars come in two types, having either ball-like or shell-like charge density. We analyze the properties of these solutions and determine their domains of existence. When mass and charge become equal, the space–times develop a throat. The shell-like solutions need not be globally regular, but may possess a horizon. The space–times then consist of a Schwarzschild-type black hole in the interior, surrounded by a shell of charged matter, and thus a Reissner–Nordström-type space–time in the exterior. These solutions violate black hole uniqueness. The mass of the black hole solutions is related to the mass of the regular shell-like solutions by a mass formula of the type first obtained within the isolated horizon framework.  相似文献   

5.
Supermassive black holes at the centres of galaxies have long been thought to be the engines of quasars, which emit more energy than any other sources in the Universe. In the local Universe, dormant supermassive black holes have been detected through the motions of stars and gas near the galactic centres. In the distant Universe, high energy X-ray observations are now revealing the accretion of matter onto supermassive black holes, even when the black holes are highly obscured by gas and dust. Great advances are being made in obtaining a cosmic census of supermassive black holes. The duration, times, and mass inflow rates to these black holes are being traced via multiwavelength follow-up observations with ground-based telescopes and a time history of the accretion is thereby being reconstructed.  相似文献   

6.
It is shown that particles accelerating near the event horizon of a spinning supermassive black hole that is threaded by externally supported magnetic field lines suffer severe curvature losses that limit the maximum energy they can attain to values well below that imposed by the maximum voltage drop induced by the black hole dynamo. It is further shown that the dominant fraction of the rotational energy extracted from the black hole is radiated in the TeV band. The implications for vacuum breakdown and the observational consequences are discussed.  相似文献   

7.
8.
A supermassive binary black-hole candidate SDSS J1430+2303 reported recently motivates us to investigate an imminent binary of supermassive black holes as potential gravitational wave source, and the radiated gravitational waves at the end of the merger are shown to be in the band of space-borne detectors. We provide a general analysis on the required detecting sensitivity needed for probing such type gravitational wave sources and make a full discussion by considering two typically designed con...  相似文献   

9.
Using the effective four-dimensional Einstein field equations, we build analytical models of spherically symmetric stars in the brane-world, in which the external space-time contains both an ADM mass and a tidal charge. In order to determine the interior geometry, we apply the principle of minimal geometric deformation, which allows one to map general relativistic solutions to solutions of the effective four-dimensional brane-world equations. We further restrict our analysis to stars with a radius linearly related to the total general relativistic mass, and obtain a general relation between the latter, the brane-world ADM mass and the tidal charge. In these models, the value of the star’s radius can then be taken to zero smoothly, thus obtaining brane-world black hole metrics with a tidal charge solely determined by the mass of the source and the brane tension. We find configurations which entail a partial screening of the gravitational mass, and general conclusions regarding the minimum mass for semiclassical black holes are also drawn.  相似文献   

10.
We review the current understanding of the cosmological evolution of supermassive black holes in galactic centers elucidated by X-ray surveys of active galactic nuclei (AGNs). Hard X-ray observations at energies above 2 keV are the most efficient and complete tools to find “obscured” AGNs, which are dominant populations among all AGNs. Combinations of surveys with various flux limits and survey area have enabled us to determine the space number density and obscuration properties of AGNs as a function of luminosity and redshift. The results have essentially solved the origin of the X-ray background in the energy band below ∼10 keV. The downsizing (or anti-hierarchical) evolution that more luminous AGNs have the space-density peak at higher redshifts has been discovered, challenging theories of galaxy and black hole formation. Finally, we summarize unresolved issues on AGN evolution and prospects for future X-ray missions.  相似文献   

11.
If the cosmological dark matter is primarily in the form of an elementary particle which has mass m(p) and cross section for self-interaction sigma, then seed black holes (formed in stellar collapse) will grow in a Hubble time t(H) due to accretion of the dark matter to a mass, M(H) = sqrt[IC(9)(A)t(H)(sigma/G(3)m(p)c(2))] = 7.1x10(6)(sigma/m(p))(1/2)V(9/2)(c)t(1/2)(H,15) solar masses. Here I is a numerical factor, C(A) the galactic velocity dispersion, and V(c) its rotation velocity. For the same values of ( sigma/m(p)) that are attractive with respect to other cosmological desiderata, this produces massive black holes in the (10(6)-10(9))M( middle dot in circle) range observed, with the same dependence on a V(c) seen, and with a time dependence consistent with observations. Other astrophysical consequences of collisional dark matter and tests of the idea are noted.  相似文献   

12.
As it was pointed out recently in Hees et al. (Phys Rev Lett 118:211101, 2017), observations of stars near the Galactic Center with current and future facilities provide an unique tool to test general relativity (GR) and alternative theories of gravity in a strong gravitational field regime. In particular, the authors showed that the Yukawa gravity could be constrained with Keck and TMT observations. Some time ago, Dadhich et al. (Phys Lett B 487:1, 2001) showed that the Reissner–Nordström metric with a tidal charge is naturally appeared in the framework of Randall–Sundrum model with an extra dimension (\(Q^2\) is called tidal charge and it could be negative in such an approach). Astrophysical consequences of presence of black holes with a tidal charge are considerered, in particular, geodesics and shadows in Kerr–Newman braneworld metric are analyzed in Schee and Stuchlík (Intern J Mod Phys D 18:983, 2009), while profiles of emission lines generated by rings orbiting braneworld Kerr black hole are considered in Schee and Stuchlík (Gen Relat Grav 52:1795, 2009). Possible observational signatures of gravitational lensing in a presence of the Reissner–Nordström black hole with a tidal charge at the Galactic Center are discussed in papers (Bin-Nun in Phys Rev D 81:123011, 2010; Bin-Nun in Phys Rev D 82:064009, 2010; Bin-Nun in Class Quant Grav 28:114003, 2011). Here we are following such an approach and we obtain analytical expressions for orbital precession for Reissner–Nordström–de-Sitter solution in post-Newtonian approximation and discuss opportunities to constrain parameters of the metric from observations of bright stars with current and future astrometric observational facilities such as VLT, Keck, GRAVITY, E-ELT and TMT.  相似文献   

13.
14.
Static vacuum spacetimes with one compact dimension include black holes with localized horizons but also uniform and nonuniform black strings where the horizon wraps over the compact dimension. We present new numerical solutions for these localized black holes in 5 and 6 dimensions. Combined with previous 6D nonuniform string results, these provide evidence that the black hole and nonuniform string branches join at a topology changing solution.  相似文献   

15.
Mergers of supermassive black hole binaries release peak power of up to approximately 10(57) erg s(-1) in gravitational waves (GWs). As the GWs propagate through ambient gas, they induce shear and a small fraction of their power is dissipated through viscosity. The dissipated heat appears as electromagnetic (EM) radiation, providing a prompt EM counterpart to the GW signal. For thin accretion disks, the GW heating rate exceeds the accretion power at distances farther than approximately 10(3) Schwarzschild radii, independently of the accretion rate and viscosity coefficient.  相似文献   

16.
It is shown that the initial data which gives rise to stationary black hole solutions extremizes the mass for a given angular momentum and area of the horizon. The only extremum of the mass for a given area of the horizon but arbitrary angular momentum is the Schwarzschild solution. In this case, and when the angular momentum is small, the extremum of the mass is a local minimum. This suggests that the initial data for the Schwarzschild solution has a smaller mass than any other initial data with the same area of the horizon. If this is the case, there is no possibility of proving the occurrence of naked singularities by methods suggested by Penrose and Gibbons. Together with Carter's theorem, the fact that the extremum is a local minimum indicates that the Kerr solutions are stable against axisymmetric perturbations.  相似文献   

17.
银河系中心超大质量黑洞   总被引:1,自引:0,他引:1  
沈志强 《物理》2007,36(12):919-926
通过对位于银河系中心的非热、致密射电源人马座A*(Sagittarius A*)的高分辨率甚长基线干涉(VLBI)观测,文章作者及其合作者成功地得到人马座A*的固有辐射区域的直径仅为1个天文单位,支持其是超大质量黑洞的物理解释.文章在较详细地介绍此研究的同时,也简要提及了从黑洞概念的最早提出至今的200多年里人们在黑洞物理认知上的一些重大进展.可以预期,未来亚毫米波VLBI观测将有望揭示银河系中心超大质量黑洞的阴影结构.  相似文献   

18.
Quasi-periodic oscillations (QPOs) of the hot plasma spots or clumps orbiting an accreting black hole contain information on the black hole mass and spin. The promising observational signatures for the measurement of black hole mass and spin are the latitudinal oscillation frequency of the bright spots in the accretion flow and the frequency of black hole event horizon rotation. Both of these frequencies are independent of the accretion model and defined completely by the properties of the black hole gravitational field. Interpretation of the known QPO data by dint of a signal modulation from the hot spots in the accreting plasma reveals the Kerr metric rotation parameter, \(a=0.65\pm 0.05\) , and mass, \(M=(4.2\pm 0.2)10^6M_\odot \) , of the supermassive black hole in the Galactic center. At the same time, the observed 11.5 min QPO period is identified with a period of the black hole event horizon rotation, and, respectively, the 19 min period is identified with a latitudinal oscillation period of hot spots in the accretion flow. The described approach is applicable to black holes with a low accretion rate, when accreting plasma is transparent up to the event horizon region.  相似文献   

19.
Black hole formation is an inevitable consequence of relativistic core collapse following the gravothermal catastrophe in self-interacting dark matter (SIDM) halos. Very massive SIDM halos form supermassive black holes (SMBHs) > or about 10(6)M(middle dot in circle) directly. Smaller halos believed to form by redshift z = 5 produce seed black holes of (10(2)-10(3))M(middle dot in circle) which can merge and/or accrete to reach the observational SMBH range. This scenario for SMBH formation requires no baryons, no prior star formation, and no other black hole seed mechanism.  相似文献   

20.
An attempt is made in order to clarify the so called regular black holes issue. It is revisited that if one works within general relativity minimally coupled with non linear source, mainly of electromagnetic origin, and within a static spherically symmetric ansatz for the metric, there is still room for singular contribution to the black hole solution. A reconstruction method is proposed and several examples are discussed, including new ones. A possible way to obtain a non singular black hole is introduced, and in this case, several known examples are re-discussed, and new ones are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号