首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parallel synthesis techniques aim to prepare collections of single compounds which, once tested, can easily be identified by their sole location in the synthesic array. On the other hand, true combinatorial chemistry produces libraries of compounds as mixtures of variable size which require a deconvolution procedure for identification of the active hits or leads. In the latter case, analytical methods are crucial for the success of the strategy and mass spectrometry plays a major role. If the goal is to identify all the library components, including expected products as well as by-products, various mass spectrometric techniques may be necessary. Library components can be separated according to their mass by increasing mass resolution or by their elution time by coupling liquid chromatography and mass spectrometry. The efficiency of such separation techniques are discussed as a function of the size and the degeneracy of the library. Library members possess common structural features which impart similar fragmentation patterns after ionization in the gas phase. This feature can be exploited by tandem mass spectrometry to specifically detect subfamilies of products. Examples of precursor ion scans, product ion scans and constant neutral loss scans will be shown that facilitate partial characterization of libraries. To solve the difficult problem of the quantitative analysis of libraries, i.e., to evaluate their equimolarity, the use of an evaporative light scattering detector (ELSD) or a chemiluminescent nitrogen detector (CLND) is suggested as more appropriate.  相似文献   

2.
A method has been developed for the rapid identification of optimal enzyme substrates from combinatorial libraries. This methodology was validated by screening a 361-member N-terminally formylated tripeptide library, f-XXR (X = 19 different amino acids), for optimal substrates of Escherichia coli peptide deformylase (PDF). The library was synthesized on a solid phase via the split-pool synthesis method. The N-terminal formyl group was added by treating the resin with a 1:1 (mol/mol) mixture of HCO(2)H and DCO(2)D in the presence of dicyclohexylcarbodiimide. In a mass spectrum, each member of the library produced a doublet peak (separated by 1.0063 Da). Limited treatment of this library with E. coli PDF resulted in the deformylation of those peptides that are the most efficient substrates of the enzyme. The deformylated products, due to loss of the mass-degenerate formyl group, each generated a singlet peak in the mass spectrum. Thus, the PDF product peaks were readily identified and sequenced via tandem mass spectrometry. The results showed that PDF strongly prefers a norleucine and, to a lesser extent, a phenylalanine as the N-terminal residue, whereas it has little selectivity at the penultimate position. This result is in excellent agreement with the literature data and therefore demonstrates the methodology as an effective approach to the identification of optimal enzyme substrates. This method should be generally applicable to other enzymes as well as synthetic catalysts.  相似文献   

3.
Supported peptide and drug-like organic molecule libraries were profiled in single nondestructive imaging static secondary ion mass spectrometric experiments. The selective rupture of the bond linking the compound and the insoluble polymeric support (resin) produced ions that were characteristic of the anchored molecules, thus allowing unambiguous resin bead assignment. Very high sensitivity and specificity were obtained with such a direct analytical method, which avoids the chemical release of the molecules from the support. Libraries issued from either mix-and-split or parallel solid-phase organic syntheses were profiled, demonstrating the usefulness of such a technique for characterization and optimization during combinatorial library development. Moreover, the fact that the control was effected at the bead level whatever the structure and quantity of the anchored molecules allows the sole identification of active beads selected from on-bead screening. Under such circumstances, the time-consuming whole-library characterization could thus be suppressed, enhancing the throughput of the analytical process.  相似文献   

4.
The use of electrospray ionisation Fourier-transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) for the analysis of dynamic combinatorial libraries (DCLs) of pseudo-peptide macrocyclic hydrazone oligomers is presented. The design of library building blocks results in mixtures of compounds with greater diversity than libraries generated by conventional combinatorial chemistry and so presents increased demands for analysis. The extended capabilities of the FTICR technique, specifically selective ion trapping, sensitivity, high resolution and mass accuracy over a broad mass range, are compatible with these increased demands and, most importantly, without the need for chromatography. Preliminary studies on the sequencing of cyclic oligomers and confirmation of the presence of sequence isomers are presented. These studies highlight the potential of FTICR-MS as a superior technique for the analysis of combinatorially generated compounds.  相似文献   

5.
Fully-protected C-terminal free peptides can be conveniently analyzed by high-resolution electrospray tandem mass spectrometry (ESI-MS/MS) in a quadrupole quadrupole time-of-flight tandem hybrid mass spectrometer, operated in the negative (-) ionizaionization mode. The unusual choice of negative ions in mass spectrometry applications to peptide analysis was needed to obtain exhaustive sequence and structural data. The low-energy collision-induced dissociation (CID) experiments provided, in fact, tandem mass spectra displaying highly diagnostic fragments with a good signal-to-noise ratio. The method is applied to segments of porcine calcitonin (Cal), Cal (1016, 1), Cal (1724, 2) and Cal (2528, 3) whose [M H]- deprotonated molecular ions provided low-energy CID mass spectra which allow the evaluation either of the primary structure of the peptide and of the location of the side-chain protective groups. ESI (+) MS can be conveniently used, in the high resolution mode, to achieve precise information on the elemental composition of the examined peptides.  相似文献   

6.
An observation that a series of proprietary compounds containing a methyl thiophenyl group all underwent metabolic S-oxidation, and that the product ion spectra of the resulting S-oxides showed methyl radical loss under low-energy atmospheric pressure ionisation tandem mass spectrometry (API-MS/MS) conditions, has led to an investigation of the fragmentation of commercially available sulphoxides. The phenyl methyl sulphoxides studied do lose methyl radicals under MS/MS conditions on triple quadrupole mass spectrometers. In addition, the phenyl sulphoxides, with simple substituents other than a methyl group, also showed a tendency to lose the substituent as a radical. It was concluded that radical loss from these simple sulphoxides was characteristic of S-oxidation of these molecules. Radical losses, such as those reported here, are used in-house to distinguish S-oxidation from N- and C-oxidation in metabolism studies.  相似文献   

7.
Fisher IP  Fischer P 《Talanta》1974,21(8):867-875
The major group types in petroleum streams may be analysed by high-resolution mass spectrometry. The method described here relies on a calibration matrix derived from the high-resolution spectra both of pure compounds and of cuts separated from petroleum. The analytical results have been assessed statistically for precision.  相似文献   

8.
Fragmentation of the main Barrenwort flavonoids—icariin, icaritin, icarisides I and II, and epimedins A and B—is studied by tandem mass spectrometry. High-resolution mass spectra of positively charged ions of these compounds are obtained under the conditions of collision-induced dissociation. Characteristic fragment ions are determined, which ensured the classification of unknown compounds as Barrenwort flavonoids. Epimedin C was isolated from raw plant material by preparative liquid chromatography; its structure was confirmed by 1H and 13C NMR spectra.  相似文献   

9.
A fully automated computer-controlled system was used to generate series of different linked scans at constant B2E and constant neutral loss in the second field-free region. This system has been shown to be suitable for deriving the amino acid sequence of oligopeptides.  相似文献   

10.
The paper examines the transformation of phenazone (2,3-dimethyl-1-phenyl-3-pyrazolin-5-one), a widely used analgesic and antipyretic drug, under simulated solar irradiation in pure water, using titanium dioxide, and in river water. High-resolution mass spectrometry was employed to monitor the evolution of photoinduced processes. Initially, laboratory experiments were performed to simulate drug-transformation pathways in aqueous solution, using TiO(2) as photocatalyst. Thirteen main phenazone transformation products were detected, and full analysis of their MS and MS(n) spectra identified the diverse isobaric species. All these transformation products were themselves easily degraded, and no compounds were recognized to remain until 1h of irradiation. From these findings, a tentative degradation pathway is proposed to account for the photoinduced transformation of phenazone in natural waters. These simulation experiments were verified in the field, seeking phenazone in River Po water samples.  相似文献   

11.
We employ a newly developed buckminsterfullerene (C(60)) primary ion beam with time-of-flight secondary ion mass spectrometry to create molecule-specific images of resin particles employed in the solid-phase synthesis of peptide combinatorial libraries. This new cluster ion source, when operated at an incident energy of 20 keV, is remarkably effective at desorbing small peptides directly from a polymer surface and opens new possibilities for characterizing large arrays of diverse sets of molecules. In addition, the C(60) ion beam may be focused to a spot of 1.5 microm in diameter, enabling molecule-specific images of single 100 microm resin particles to be acquired. We report three significant aspects associated with utilizing the C(60) projectile that show how this technology can be taken to a more advanced level, especially when compared to results obtained with more conventional atomic primary ions. First, the useful yield of molecular ions is generally observed to be enhanced by at least 3 orders of magnitude over those previously possible. Second, the energy dissipation process associated with the C(60) impact is most efficient at desorbing molecules on soft substrates such as polymer surfaces rather than harder substrates such as metals or semiconductors. Third, there is a greatly reduced tendency for insulating surfaces to build up excess charge, obviating the need for charge compensation. Using a small five-member peptide library as a model, we show that by utilizing the focusing properties of the C(60) beam, it is possible to assay the surface composition of 100-microm polymer beads at a rate of up to 10 particles/s. Moreover, even at the picomole level, there are enough sequence ions in the mass spectrum to determine a unique composition. The results illustrate the ability to quickly assay large libraries without the use of tags and suggest the strategy may be applicable to a range of high-throughput experiments.  相似文献   

12.
13.
The behavior of C-terminal amidated and carboxylated peptides upon low-energy collision-induced dissociation (CID) was investigated. Two sets of 76 sequences of variable amino acid compositions and lengths were synthesized as model compounds. In most cases, C-terminal amidated peptides were found to produce, upon CID, an abundant loss of ammonia from the protonated molecules. To validate such MS/MS signatures, the studied peptides contained amino acids that can potentially release ammonia from their side chains, such as asparagine, glutamine, tryptophan, lysine and arginine. Arginine, and to a lesser extent lysine, was shown to induce a competitive fragmentation leading to the loss of ammonia from their side chains, thus interfering with the targeted backbone neutral release. However, when arginine or lysine was located at the C-terminal position mimicking a tryptic digest, losses of ammonia from the arginine side chain and from the peptide backbone were completely suppressed. Such results were discussed in the frame of peptidomic or proteomic studies in an attempt to reveal the presence of C-terminal amidated peptides or proteins.  相似文献   

14.
A novel and efficient encoding method based on mass spectrometry for "one-bead-one-compound" small molecule combinatorial libraries has been developed. The topologically segregated bifunctional resin beads with orthogonal protecting groups in the outer and inner regions are first prepared according to our previously published procedure. Prior to library synthesis, the inner core of each bead is derivatized with 3-4 different coding blocks on a cleavable linker. Each functional group on the scaffold is encoded by an individual coding block containing a functional group with the same chemical reactivity. During the library synthesis, the same chemical reactions take place on the scaffold (outer layer of the bead) and coding blocks (inner core of the bead) concurrently. After screening, the coding tags in the positive beads are released, followed by molecular mass determination using matrix-assisted laser desorption ionization Fourier transform mass spectrometry. The chemical structure of library compounds can be readily identified according to the molecular masses of the coding tags. The feasibility and efficiency of this approach were demonstrated by the synthesis and screening of a model small molecule library containing 84 672 member compounds, with a model receptor, streptavidin. Streptavidin binding ligands with structural similarity (17) were identified. The decoding results were clear and unambiguous.  相似文献   

15.
The analytical capabilities of a high-resolution mass spectrometer in combination with a 13.56 MHz glow discharge ion source for the analysis of semiconducting materials (silicon carbide and gallium arsenide) were studied. It was shown that single positively charged ions of sample material have about 10 eV higher average energy than the ions of the discharge and residual gas. Therefore effective energy separation of the ions of analyte from the ions of the discharge and residual gas was achieved by adjusting the ion transfer optics (breadth and position of energy slit), which improves the analytical capabilities of the developed method.Some analytical applications are presented to illustrate the performance of r.f. GDMS for the bulk analysis of semiconducting materials. The results of the trace element analysis of gallium arsenide and silicon carbide samples are compared with data of independent methods (LIMS, ICP-AES, SIMS).Dedicated to Professor Dr. rer. nat. Dr. h.c. Hubertus Nickel on the occasion of his 65th birthdayOn leave from the Institute of Inorganic Chemistry, 630090 Novosibirsk, Russia  相似文献   

16.
Metal labelling of peptides and proteins using high-affinity metal-chelating compounds has found widespread applications in the medical and bioanalytical fields. In the present study we investigated the analysis of peptides derivatized either with cysteine- or amino group-directed metal-bound DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) chelators in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The metal complexes of DOTA were shown to be stable under MALDI-MS conditions. The introduction of the metal label led in a number of cases to significantly increased signal-to-noise (S/N) values and thus improved sensitivity of the labelled peptides compared to their unlabelled counterparts, especially for multiply labelled peptides. The presence of the labels did alter the tandem mass spectrometric (MS/MS) behaviour, namely the formation of sequence specific a-, b- and y-ion series, in dependence of the position of the label within the peptide sequence. For cysteine-derivatized peptides several label-specific reporter ions and characteristic immonium ions could be identified. Amino-directed labelling led only to the formation of characteristic immonium ions in ε-amino groups of lysine, whereas N-terminal labelling in some cases led to the formation of a(1)- and b(1)-ions. The results clearly show that MALDI-MS is suitable for the analysis of metal-labelled peptides, which was also confirmed in liquid chromatography (LC)/MALDI-based identification of proteins in a model protein mixture labelled with Cys-reactive DOTA. Here, in comparison to a run with alkylated cysteines, more than 50% more cysteine-containing peptides were identified.  相似文献   

17.
Thermospray high-performance liquid chromatography-mass spectrometry (TSP-HPLC-MS) and direct probe high-resolution MS was used to analyze four candidate anticancer drugs. The techniques were used to confirm the identity of the bulk drug and to identify impurities. Analysis by TSP-HPLC-MS resulted in molecular weight information from the separated components using as little as 50 ng of each drug. The high-resolution direct probe MS analysis provided additional structural information and possible empirical formulas for the parent drugs and their impurities. The use of both of these complimentary techniques proved to be very specific for the detection of the anticancer drugs and for postulating the identity of impurities.  相似文献   

18.
19.
In a diseased state in man or animals a change at eh molecular level might occur. A pyrolysis-high-resolution mass spectrometric method has been developed to measure these changes. The mass spectra are used as fingerprints. A similar approach is reported using low-resolution mass spectrometry. The difference between low resolution and high resolution is that the number of mass spectral lines is strongly increased and therefore also the information content. As a result, a change at the molecular level will be more pronounced in high-resolution mass spectra. As an application, the results of toxicity studies on Daphnia magna are given. The experiments were performed with paraoxon, parathion and malathion. The changes at the molecular level in Daphnia magna appear to be substance-dependent.  相似文献   

20.
Brown WF  Fisher IP 《Talanta》1972,19(6):798-801
The effect of controlling the temperature of the ion source of a high-resolution mass spectrometer is to increase the confidence in mass spectral pattern coefficients of saturated molecules. Results are presented for both controlled and uncontrolled ion-source temperatures. Standard deviations have been calculated for selected summations of ion intensities and criteria have been suggested for maintaining meaningful analytical results in the study of petroleum distillates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号