首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption of 2-propanol, (CH3)2CHOH, on a Si(111)-7x7 surface was studied by scanning tunneling microscopy. (CH3)2CHOH adsorbs equally on the faulted and unfaulted half unit cells by forming Si-OCH(CH3)2 and Si-H on an adatom and rest atom pair. Si-OCH(CH3)2 is consecutively increased in each half unit cell, and the adsorption is saturated when every half unit cell has three Si-OCH(CH3)2, which corresponds to 0.5 of the adatom coverage. The sticking probability for the dissociation of (CH3)2CHOH is independent of the adatom coverage from 0 to 0.4, but it depends on coverage at higher than 0.4. By counting the darkened adatoms, Si-OCH(CH3)2 on the center adatom (m) and that on the corner adatom (n), it was found the m/n ratio is ca. 4 for the first dissociation of (CH3)2CHOH in virgin half unit cell, but it becomes ca. 1.9 and 1.8 when two and three Si-OCH(CH3)2 are contained in a half unit cell. This result reveals that the dissociation probability of (CH3)2CHOH at the adatom-rest atom pair site is influenced by the nearest Si-OCH(CH3)2 in the half unit cell.  相似文献   

2.
The process of benzene adsorption on an adjacent adatom-rest atom pair on Si(111)-7 x 7 at room temperature was studied using in-situ scanning tunneling microscopy (STM). Both adsorption and desorption of benzene were observed to take place mostly at adjacent sites during the process. DFT calculation results show that the bond length between the rest atom and the carbon atom in a pre-adsorbed benzene molecule increases due to the charge transfer from a neighboring rest atom in response to an approaching benzene molecule. Such increase in the bond length, when coupled resonantly to the C-Si thermal vibration, could result in bond breakage and desorption of the adsorbate. The studies provide evidence for the desorption of a chemisorbed benzene caused by an adsorbing benzene at a neighboring site through a substrate-mediated electronic interaction.  相似文献   

3.
Adsorption structures formed upon vapor deposition of the natural amino acid L-cysteine onto the (111) surface of gold have been investigated by scanning tunneling microscopy under ultrahigh vacuum conditions. Following deposition at room temperature and at cysteine coverages well below saturation of the first monolayer, we found coexistence of unordered molecular islands and extended domains of a highly ordered molecular overlayer of quadratic symmetry. As the coverage was increased, a number of other structures with local hexagonal order emerged and became dominant. Neither of the room temperature, as-deposited, ordered structures showed any fixed rotational relationship to the underlying gold substrate, suggesting a comparatively weak and nonspecific molecule-substrate interaction. Annealing of the cysteine-covered substrate to 380 K lead to marked changes in the observed adsorption structures. At low coverages, the unordered islands developed internal order and their presence started to perturb the appearance of the surrounding Au(111) herringbone reconstruction. At coverages beyond saturation of the first monolayer, annealing led to development of a ( radical3 x radical3)R30 degrees superstructure accompanied by the formation of characteristic monatomically deep etch pits, i.e., the behavior typically observed for alkanethiol self-assembled monolayers on Au(111). The data thus show that as-deposited and thermally annealed cysteine adsorption structures are quite different and suggest that thermal activation is required before vacuum deposited cysteine becomes covalently bound to single crystalline Au(111).  相似文献   

4.
Scanning tunneling microscopy (STM) has been used to directly investigate the local structure of methyl isocyanide (CNCH3) adsorbed on Pt(111). At low coverages, CNCH3 is preferentially adsorbed at on-top sites, in agreement with earlier deductions based on vibrational spectroscopy. When dosed at low coverages at 50 K, the molecules tend to adsorb near other CNCH3 molecules with preferred distances of a and a, where a = 2.78 A is the lattice constant of Pt. Annealing the surface to 120 K, however, results in a more uniform separation of the molecules. At higher coverages, the CNCH3 molecules are observed to occupy both on-top and two-fold bridge sites. On the basis of STM image analysis, CNCH3 forms an ordered layer of (2 x 3) periodicity at 0.33 ML. Additional details on the structures of CNCH3 adsorbed at the on-top and two-fold bridge sites are provided by density functional theory (DFT) calculations. At a coverage that saturates the first layer (0.33 ML), the occupation ratio for the on-top and two-fold bridge bonded CNCH3 is 1:1, which is consistent with the results obtained from the combined use of experimental reflection absorption infrared spectroscopy (RAIRS) data and DFT calculations.  相似文献   

5.
The self-assembly of L-tryptophan on Cu(111) is investigated by an ultrahigh vacuum scanning tunneling microscope (STM) at 4.4 K. A series of novel supramolecular structures have been prepared with different annealing temperatures.  相似文献   

6.
The self-assembly of l-tryptophan on Cu(111) is investigated by an ultrahigh vacuum scanning tunneling microscope (STM) at 4.4 K. When deposited onto the substrate at around 120 K with a coverage of 0.1 monolayer, molecular trimers, tetramers, hexamers, and chains coexist on Cu(111). Then almost all molecules self-assemble into chiral hexamers after being annealed at room temperature. When increasing molecular coverage to the full layer, a new type of chain is observed on the surface. Based on the high-resolution STM images at sub-molecular level, we suggest that the l-tryptophan molecules are present in neutral, zwitterionic or anionic states in these structures.  相似文献   

7.
Uni-sized platinum clusters (size range of 5-40) on a silicon(111)-7 x 7 surface were prepared by depositing size-selected platinum cluster ions on the silicon surface at the collision energy of 1.5 eV per atom at room temperature. The surface thus prepared was observed by means of a scanning tunneling microscope (STM) at the temperature of 77 K under an ambient pressure less than 5 x 10(-9) Pa. The STM images observed at different cluster sizes revealed that (1) the clusters are flattened and stuck to the surface with a chemical-bond akin to platinum silicide, (2) every platinum atom occupies preferentially the most reactive sites distributed within a diameter of approximately 2 nm on the silicon surface at a cluster size up to 20, and above this size, the diameter of the cluster increases with the size, and (3) the sticking probability of an incoming cluster ion on the surface increases with the cluster size and reaches nearly unity at a size larger than 20.  相似文献   

8.
彭章泉  汪尔康 《中国化学》2000,18(5):698-702
Nanogold colloidal solutions are prepared by the reduction of HAuClO4 with sodium citrate and sodium borohydride.4-Aminothiophenol (ATP) self-assembled monolayers (SAMs) are formed on gold(111) surface,on which gold nanopartides are immobilized and a sub-monolayer of the particles appears.This sub-monolayer of gold nanopartides is characterized with scanning tunneling microscopy (STM),and a dual energy barrier tunneling model is proposed to explain the imageability of the gold nanopartides by STM.This model can also be used to construct multiple energy barrier structure on solid/ liquid interface and to evaluate the electron transport ability of some organic monolayers with the aid of electrochemical method.  相似文献   

9.
10.
Chlorine-terminated Si(111) surfaces prepared through the wet-chemical treatment of H-terminated Si(111) surfaces with PCl5 (in chlorobenzene) were investigated using ultrahigh vacuum scanning tunneling microscopy (UHV cryo-STM) and tunneling spectroscopy. STM images, collected at 77 K, revealed an unreconstructed 1 x 1 structure for the chlorination layer, consistent with what has been observed for the gas phase chlorination of H-terminated Si(111). However, the wet-chemical chlorination is shown to generate etch pits in the Si(111) surface, with an increase in etch pit density correlating with increasing PCl5 exposure temperatures. These etch pits were assumed to stabilize the edge structure through the partial removal of the <112> step edges. Tunneling spectroscopy revealed a nonzero density of states at zero bias. This is in contrast to the cases of H-, methyl-, or ethyl-terminated Si(111), in which similar measurements have revealed the presence of a large conductance gap.  相似文献   

11.
Nucleation and growth of two‐dimensional Ge nanoclusters on the Si(111)‐(7 × 7) surface at elevated substrate temperatures have been studied using scanning tunneling microscopy. The uniformity of the Ge nanoclusters is improved with the increase of substrate temperature, and ordered Ge nanoclusters are formed on the faulted and unfaulted halves of (7 × 7) unit cell at substrate temperature of 200 °C. It is proposed that the Ge nanoclusters consist of six Ge atoms with three on top of the center adatoms and others on the rest atoms within one half of a unit cell. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The electronic excitations induced with tunneling electrons into adlayers of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) on Ag(111) have been investigated by in situ fluorescence spectroscopy in scanning tunneling microscopy (STM). A minute area of the surface is excited by an electron tunneling process in STM. Fluorescence spectra strongly depend on the coverage of PTCDA on Ag(111). The adsorption of the first PTCDA layer quenches the intrinsic surface plasmon originated from the clean Ag(111). When the second layer is formed, fluorescence spectra are dominated by the signals from PTCDA, which are interpreted as the radiative decay from the manifold of first singlet excited state (S(1)) of adsorbed PTCDA. The fluorescence of PTCDA is independent of the bias polarity. In addition, the fluorescence excitation spectrum agrees with that by optical excitation. Both results indicate that S(1) is directly excited by the inelastic impact scattering of electrons tunneling within the PTCDA adlayer.  相似文献   

13.
Hommrich J  Hümann S  Wandelt K 《Faraday discussions》2002,(121):129-38; discussion 229-51
Atomically resolved in situ STM images are presented for an underpotentially deposited (upd) cadmium layer on a Cu(111) electrode from a 10(-4) M CdCl2/10(-2) M HCl solution. The observed moiré-like structure seen in the images is analysed by means of an algebraic model for this long-range superstructure. A structure model for the upd layer is developed which reflects all features of the observed moiré pattern. Furthermore the height modulation was simulated by a hard-sphere model for the Cd overlayer and shows remarkable agreement with the detailed tunneling current density distribution of the measured STM images. The existence of translational and rotational domains is demonstrated. The results are also compared and shown to be fully consistent with previous (ex situ) low-energy electron diffraction (LEED) observations of this system. The mechanism of Cd upd involves a dynamic site exchange between preadsorbed Cl- anions and adsorbing Cd2+ cations as previously concluded from ex situ X-ray photoelectron (XPS) and low-energy ion scattering (LEIS) measurements.  相似文献   

14.
The adsorption of glycine and l-cysteine on Si(111)-7 x 7 was investigated using high-resolution electron energy loss spectroscopy (HREELS) and X-ray photoelectron spectroscopy (XPS). The observation of the characteristic vibrational modes and electronic structures of NH3+ and COO- groups for physisorbed glycine (l-cysteine) demonstrates the formation of zwitterionic species in multilayers. For chemisorbed molecules, the appearance of nu(Si-H), nu(Si-O), and nu(C=Omicron) and the absence of nu(O-H) clearly indicate that glycine and l-cysteine dissociate to produce monodentate carboxylate adducts on Si(111)-7 x 7. XPS results further verified the coexistence of two chemisorption states for each amino acid, corresponding to a Si-NH-CH2-COO-Si [Si-NHCH(CH2SH)COO-Si] species with new sigma-linkages of Si-N and Si-O, and a NH2-CH2-COO-Si [NH2CH(CH2SH)COO-Si] product through the cleavage of the O-H bond, respectively. Glycine/Si(111)-7 x 7 and l-cysteine/Si(111)-7 x 7 can be viewed as model systems for further modification of Si surfaces with biological molecules.  相似文献   

15.
Electron correlation effects associated with the dangling bond surface states of Si(111)-5×5, Si(111)-7×7 and Sn/Ge(111)-3×3 are analyzed. In all the cases, extensive LDA-calculations are performed and effective two-dimensional Hamiltonians are deduced. Our analysis of these Hamiltonians shows that: (a) the Si(111)-5×5 surface states exhibits a metal-insulator transition; (b) the Si(111)-7×7 surface shows important similarities with the Si(111)-5×5 case, but it has a dangling bond surface band having a metallic character; (c) finally, the Sn/Ge(111)-3×3 dangling bond surface bands also shows important correlation effects that are found, however, not to affect the metallic character of the surface bands.  相似文献   

16.
Electrochemical oxidative formation and reductive desorption processes of a self-assembled monolayer (SAM) of hexanethiol on a Au(111) surface in KOH ethanol solutions containing various concentrations of hexanethiol were investigated by in situ scanning tunneling microscopy in real time. The generation and disappearance of vacancy islands (VIs), corresponding to the formation and desorption of the SAM, respectively, were observed as anodic and cathodic current, respectively, flowed when the thiol concentration was higher than ca. 1 microM. When the VIs disappeared after the reductive desorption of the SAMs, the herringbone structure corresponding to the (radical3 x 23) structure of Au(111), was observed on the surface, indicating that a clean reconstructed surface was exposed even in the hexanethiol ethanol solution. During both oxidative adsorption and reductive desorption of the SAMs, the shape of the steps of the gold substrate changed drastically and the step lines became parallel to the 121 direction of the Au(111) surface, suggesting that gold atoms on the surface were extremely mobile during these processes. The coalescence of adjacent vacancy islands and growth of larger islands triangular in shape accompanied with the disappearance of nearby smaller islands were observed, confirming that the VIs grew according to the Ostward ripening model.  相似文献   

17.
We demonstrate that the strong N2 bond can be efficiently dissociated at low pressure and ambient temperature on a Si(111)-7x7 surface. The reaction was experimentally investigated by scanning tunnelling microscopy and X-ray photoemission spectroscopy. Experimental and density functional theory results suggest that relatively low thermal energy collision of N2 with the surface can facilitate electron transfer from the Si(111)-7x7 surface to the π*-antibonding orbitals of N2 that significantly weaken the N2 bond. This activated N2 triple bond dissociation on the surface leads to the formation of a Si3N interface.  相似文献   

18.
In-situ scanning tunneling microscopy (STM) coupled with cyclic voltammetry was used to examine the adsorption of carbon monoxide (CO) molecules on an ordered Au(111) electrode in 0.1 M HClO4. Molecular resolution STM revealed the formation of several commensurate CO adlattices, but the (9 x radical 3) structure eventually prevailed with time. The CO adlayer was completely electrooxidized to CO2 at 0.9 V versus RHE in CO-free 0.1 M HClO(4), as indicated by a broad and irreversible anodic peak which appeared at this potential in a positive potential sweep from 0.05 to 1.6 V. A maximal coverage of 0.3 was estimated for CO admolecules from the amount of charge involved in this feature. Real-time in-situ STM imaging allowed direct visualization of the adsorption process of CO on Au(111) at 0.1 V, showing the lifting of (radical 3 x 22) reconstruction of Au(111) and the formation of ordered CO adlattices. The (9 x radical 3) structure observed in CO-saturated perchloric acid has a coverage of 0.28, which is approximately equal to that determined from coulometry. Switching the potential from 0.1 to -0.1 V restored the reconstructed Au(111) with no change in the (9 x radical 3)-CO adlattice. However, the reconstructed Au(111) featured a pairwise corrugation pattern with two nearest pairs separated by 74 +/- 1 A, corresponding to a 14% increase from the ideal value of 65.6 A known for the ( radical 3 x 22) reconstruction. Molecular resolution STM further revealed that protrusions resulting from CO admolecules in the (9 x radical 3) structure exhibited distinctly different corrugation heights, suggesting that the CO molecules resided at different sites on Au(111). This ordered structure predominated in the potential range between 0.1 and 0.7 V; however, it was converted into new structures of (7 x radical 7) and ( radical 43 x 2 radical 13) on the unreconstructed Au(111) when the potential was held at 0.8 V for ca. 60 min. The coverage of CO adlayer decreased accordingly from 0.28 to 0.13 before it was completely removed from the Au(111) surface at more positive potentials.  相似文献   

19.
The growth of nanocrystalline MoO3 islands on Au(111) using physical vapor deposition of Mo has been studied by scanning tunneling microscopy and low energy electron diffraction. The growth conditions affect the shape and distribution of the MoO3 nanostructures, providing a means of preparing materials with different percentages of edge sites that may have different chemical and physical properties than atoms in the interior of the nanostructures. MoO3 islands were prepared by physical vapor deposition of Mo and subsequent oxidation by NO2 exposure at temperatures between 450 K and 600 K. They exhibit a crystalline structure with a c(4 x 2) periodicity relative to unreconstructed Au(111). While the atomic-scale structure is identical to that of MoO3 islands prepared by chemical vapor deposition, we demonstrate that the distribution of MoO3 islands on the Au(111) surface reflects the distribution of Mo clusters prior to oxidation although the growth of MoO3 involves long-range mass transport via volatile MoO3 precursor species. The island morphology is kinetically controlled at 450 K, whereas an equilibrium shape is approached at higher preparation temperatures or after prolonged annealing at the elevated temperature. Mo deposition at or above 525 K leads to the formation of a Mo-Au surface alloy as indicated by the observation of embedded MoO3 islands after oxidation by NO2. Au vacancy islands, formed when Mo and Au dealloy to produce vacancies, are observed for these growth conditions.  相似文献   

20.
Low temperature scanning tunneling microscopy studies revealed both monomer and dimer forms of decacyclene (DC) on atomically clean Cu(100) and Cu(111). The observed image contrast in DC is strongly bias dependent and also influenced by tip modifications. Alternatively, dimers appear solely as protrusions and are nearly bias independent. We provide evidence of both dimer formation and dissociation and suggest that two DC molecules stack by aligning their molecular planes in a parallel fashion with respect to the surface. Dimers and their surface-dependent properties demonstrate the interplay between surface-molecule and molecule-molecule interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号