首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1-Isonicotinoyl-4-benzoyl-3-thiosemicarbazide (IBtsc) and its CrIII, MnII, FeIII, CoII, NiII, CuII and ZnII complexes have been prepared and characterized by elemental analyses, magnetic susceptibility measurements, u.v.–vis., i.r., n.m.r. and FAB mass spectral data. The room temperature e.s.r. spectra of the CrIII, FeIII and CuII complexes yield values, characteristic of octahedral, tetrahedral and square-planar complexes, respectively. The Mössbauer spectra of [Fe(IBtsc-H)Cl2] at room temperature and at 78 K suggest the presence of high-spin FeIII. The NiII, CrIII and CuII complexes show semiconducting behaviour in the solid state, but the ZnII complex is an insulator at room temperature. IBtsc and its soluble complexes have been screened against several bacteria, fungi and tumour cell lines.  相似文献   

2.
Summary The synthesis and characterization of MnII, CoII, NiII, CuII, ZnII, CdII UO 2 2+ , CrIII and FeIII complexes of biacetylmonoxime nicotinoyl hydrazone (H2BMNH) are reported. Elemental analysis, molar conductance, magnetic moment and spectral (i.r., visible and n.m.r.) measurements have been used to characterize the complexes. I.r. spectral data show that the ligand behaves in a bidentate and/or tridentate manner. An octahedral structure is proposed for the MnII, NiII, CrIII and FeIII complexes, while a square-planar structure is proposed for both CoII and CuII complexes on the basis of magnetic and spectral measurements.  相似文献   

3.
Complexes of CrIII, MnII, FeIII, CoII, NiII and CuII containing a macrocyclic pentadentate nitrogen–sulphur donor ligand have been prepared via reaction of a pentadentate ligand (N3S2) with transition metal ions. The N3S2 ligand was prepared by [1 + 1] condensation of 2,6-diacetylpyridine with 1,2-di(o-aminophenylthio(ethane. The structures of the complexes have been elucidated by elemental analyses, molar conductance, magnetic susceptibility measurements, i.r., electronic and e.p.r. spectral studies. The complexes are of the high spin type and are six-coordinate.  相似文献   

4.
Summary FeIII, CoII, NiII and CuII complexes of a new Schiff base, 2-phenyl-1,2,3-triazole-4-carboxalidene-2-aminophenol (PTCAP), have been synthesized and characterized by elemental analyses, molar conductance and magnetic susceptibility measurements, and by u.v.-vis., i.r. and e.p.r. spectral observations. The studies indicate an octahedral structure for the complexes with the general formula [ML2] (M = CoII, NiII or CuII.; L = PTCAP) or [M′(OH)L2] (M′ = FeIII). The i.r. spectra suggest that the ligand acts as a tridentate (NNO) donor towards CoII, NiII and CuII, and, in the FeIII complex, one of the two ligand molecules acts as a bidentate (NO) donor and the other as a tridentate donor. The M?ssbauer spectrum of the FeIII complex suggests the presence of a spin equilibrium at room temperature. Cyclic voltammograms are also recorded for the CuII and FeIII complexes.  相似文献   

5.
Summary The 4-hydroxyphenylthiocarboxyhydrazide (Hoth) ligand has been characterized by i.r.,1H and13C spectral studies. Its metal complexes with FeII, CoII,III, NiII, CuII and ZnII have been prepared and characterized on the basis of elemental analyses, molar conductance, magnetic susceptibility. Mössbauer, visible, e.s.r., i.r.,1H and13C n.m.r. spectral studies. The bonding and stereochemistry of the complexes are discussed. Hoth and its CuII complexes have been screened towards bacteria, viruses and fungi.  相似文献   

6.
Summary FeIII, CoII, NiII and CuII, complexes of a new Schiff base ligand, prepared by condensing 2-aminocyclopent-1-ene-1-dithiocarboxylic acid with benzaldehyde (ACB), and also CuII and NiII complexes of a second Schiff base ligand prepared by condensing 2-aminocyclopent-1-ene-1-dithiocarboxylic acid with salicylaldehyde (ACS), have been prepared and characterized by elemental analyses, conductivity measurements, magnetic and spectral (electronic, i.r. and e.p.r.) studies. The i.r. spectra suggest that both ACB and ACS are acting as bidentate ligands, coordinating through one of the sulphur atoms and through the azomethine nitrogen atom. The magnetic moment of the FeIII complex indicates spin crossover behaviour. Square planar structures have been assigned to the CuII and NiII complexes and a tetrahedral structure to the CoII complex. The e.p.r. spectra of the CuII complexes suggest a square planar environment with rhombic distortion around the CuII ion.  相似文献   

7.
Summary The synthesis and characterization of CrIII, MnII, FeIII, CoII, NiII, CuII, ZnII, CdII and UO inf2 sup2+ complexes of N-isonicotinamido-N-benzoylthiocarbamide (H2IBTC) are reported. I.r. spectral data show that the ligand behaves in a bidentate, tridentate and/or tetradentate manner. Different stereochemistries are proposed for CrIII, MnII, FeIII, CoII, NiII and CuII complexes on the basis of spectral and magnetic studies. The i.r. data indicate that the carbonyl oxygen of the benzoyl moiety is the backbone of chelation in most complexes.  相似文献   

8.
Summary Several new complexes of the title ligand (H2MPTS) with CoII, NiII, CuII, and CdII have been prepared. Structural assignments of the complexes have been made based on elemental analysis, molar conductivity, magnetic moment and spectral (i.r.,1H n.m.r., reflectance) studies. The compounds are non-conductors in dimethylsulphoxide. The neutral molecule is coordinated to the metal(II) sulphate as a bidentate ligandvia the two carbonyl groups. The ligand reacts with the metal(II) chlorides with the liberation of two hydrogen ions, behaving as a bianionic quadridentate (NONO) donor. Enolization is confirmed by the pH-titration of H2 MPTS and its metal(II) complexes against NaOH. A distorted octahedral structure is proposed for the CuII complex, while a square planar structure is suggested for both CoII and NiII complexes. The stoichiometry of the complexes formed in EtOH and buffer solutions, their apparent formation constants and the ranges for obedience to Beer's law are reported for CoII, NiII and CuII ions. The ligand pK values are calculated. The antimicrobial activity of H2 MPTS and its CoII, NiII, CuII and MnII complexes is demonstrated.  相似文献   

9.
Summary N-salicylidene anthranilamide (H2SAA) and its CrIII, MnII, FeIII, CoII, NiII and CuII complexes were prepared and characterized by physicochemical and spectroscopic data. H2SAA enolizes to give a dibasic ONO donor set in the divalent metal complexes. It also binds to the trivalent metal ions in a nonenolized form using a monobasic ONN donor set. CoII is oxidized to CoIII during complexation. Octahedral geometries are proposed for CrIII, MnII, FeIII and CoIII complexes, while square planar geometries are suggested for the NiII and CuII complexes. Phenoxide bridging in the CrIII and FeIII complexes and enoxide bridging in the NiII and CuII complexes is proposed.  相似文献   

10.
Summary Reaction of one mole of acetylacetone with two moles of 4-phenylthiosemicarbazide yields the unusual Schiff base, MeC(=N-NHCSNHPh)CH2C(=NNHCSNHPh)Me. APT = H2L) acetylacetone bis(4-phenylthiosemicarbazone). The complexes of CoII, NiII, CuII, ZnII and UVIO2 have been prepared and characterized by analytical, i.r., electronic spectral and magnetic measurements. The CoII, NiII and CuII complexes have been assigned square-planar stereochemistry on the basis of magnetic and spectroscopic studies. The ligand is a neutral or dibasic quadridentate SNNS donor as revealed by i.r. spectral studies.  相似文献   

11.
A series of new Schiff base complexes of FeIII, CoII, NiII and CuII containing Ph3P has been prepared and characterised. The Schiff bases have been prepared by the condensation of salicylaldehyde and naphthaldehyde with the appropriate aniline. The complexes have been characterised by analytical, spectral (i.r., electronic, magnetic, e.p.r., 1H-n.m.r.) and electrochemical studies. The new complexes have been used as catalysts for aromatic coupling reactions. Higher catalytic activity has been observed for NiII compared to the other complexes.  相似文献   

12.
Summary The complexes of MnII, CoII, NiII, CuII, ZnII, CdII, HgII, CoIII and UO 2 2+ ions with 2-hydroxyimino-3-(2-hydrazonopyridyl)-butane (HL) have been synthesised and characterized by elemental analyses, molar conductivities, magnetic measurements and spectral (i.r., visible, n.m.r.) studies. I.r. spectra show that HL behaves as a neutral or mononegative ligand and binds in a bidentate and/or tridentate manner. Also, HL behaves as oxidizing agent towards CoII forming diamagnetic CoIII complexes depending on the preparative conditions. Different stereochemistries are proposed for MnII, CoIII, CoII, NiII and CuII on the basis of spectral and magnetic studies.  相似文献   

13.
Summary The synthesis and characterization of CrII, MnII, FeII, CoII, NiII, PdII, CuII, ZnII, CdII and UO 2 2+ complexes of 1-meotinoyl-4-phenyl-3-thiosemicarbazide (H2NTS) are reported. I.r. spectral data show that the ligand behaves in a bidentate and/or tetradentate manner. An octahedral structure is proposed for the CrII, FeII and NiII complexes; a tetrahedral structure for the MnII, CoII and Cu(NTS)·2H2O complexes; and a square planar structure for the PdII and Cu(HNTS)Cl·H2O complexes. The i.r. data suggest that the FeII complex contains a hydroxo bridge.  相似文献   

14.
Monomeric UO 2 2+ , CrIII, COII, NiII and CuII complexes with primary cellulose acetate (PCA) have been prepared and characterized. Infrared,1H NMR, UV/visible spectroscopy, elemental analysis, therniogravimetry, conductance and magnetic measurements were used to assign the mode of coordination in the isolated species. The investigation revealed that PCA exhibits octahedral coordination with CrIII, CoII, NiII and a square planar form with CuII whereas the UO2 moiety is virtually linear. PCA acts as a neutral bidentate chelating agent via the two oxygen atoms of the vicinal ester groups in the secondary positions forming a five-membered chelate ring. A comparative study between chelates of PCA and those previously prepared with secondary cellulose acetate (SCA) has been undertaken.  相似文献   

15.
A novel series of 16-membered binuclear complexes of octaazatetraimine ligand, [M = MnII, CoII, NiII, CuII and ZnII; X = Cl or NO3] have been synthesized by metal template condensation reactions of o-phenylenediamine with N,N′-diacetylhydrazine in 1:1:1 molar ratio in methanol. The proposed stoichiometry and the bonding of the macrocyclic moiety to metal ions along with the overall stereochemistry have been derived from the results of elemental analyses, magnetic susceptibility, conductivity data and the spectral data revealed from FT-IR, , ESI mass, UV–visible studies. An octahedral geometry has been envisaged for MnII, CoII, and NiII complexes while a slight distortion in octahedral geometry has been noticed for CuII complexes. The low conductivity data of all the complexes suggest their non-ionic nature.  相似文献   

16.
Summary The stereochemistry and complexation behaviour of diphenyl diketone monothiosemicarbazone (DKTS) with CuII, CoII, NiII, CdII, ZnII, PdII, PtII, RuIII, RhIII and IrIII have been investigated by means of chemical, magnetic and spectral (i.r., Raman, 1H- and 13C-n.m.r. and electronic) studies. The ligand forms complexes of the M(DKTS)2 type with NiII, CuII and CoII having a distorted octahedral geometry. The absence of a v(M—X) band in the i.r. spectra, coupled with their 1:1 electrolytic conductances, suggests that RuIII, RhIII and IrIII form octahedral complexes of the [M(DKTS)2]Cl type. A four-coordinate structure involving bridging halides is proposed for the ZnII, CdII, PdII and PtII complexes, which have relatively low v(M—X) vibration modes.  相似文献   

17.
Summary 2-Amino-5(o-hydroxyphenyl)-1,3,4-thiadiazole (AHPT) complexes of the type M(AHPT-H), (M = Cull, NilI, ColI, Znll and Fell) have been prepared and characterized by analytical, magnetic, spectral (electronic and i.r.), powder x-ray diffraction and t.g. techniques. Magnetic and electronic data indicate that the FeII, CoII, CuII complexes are octahedral and that the NilI complex is a mixture of square planar and octahedral geometries.  相似文献   

18.
Summary Complexes of CoII, NiII, CuII, ZnII, CdII, HgII and UO 2 II with benzil bis(4-phenylthiosemicarbazone), H2BPT, have been synthesized and their structures assigned based on elemental analysis, molar conductivity, magnetic susceptibility and spectroscopic measurements. The i.r. spectra suggest that the ligand behaves as a binegative quadridentate (NSSN) (CoII, CuII, HgII and UO 2 II complexes) or as a binegative quadridentate-neutral bidentate chelating agent (NiII, ZnII and CdII complexes). Octahedral structures for the CoII and NiII complexes and square-planar structure for the CuII complex are suggested on the basis of magnetic and spectral evidence. The crystal field parameters (Dq, B and B) for the CoII complex are calculated and agree fairly well with the values reported for known octahedral complexes. The ligand can be used for the microdetermination of NiII ions of concentration in the 0.4–6×10–4 mol l–1 range and the apparent formation constant for the species generated in solution has also been calculated.  相似文献   

19.
A series of transition metal complexes of the type [M(ah)3](ClO4)2 (16) [M = MnII, FeII, CoII, NiII, CuII and ZnII, ah = acetylhydrazine] have been prepared by the reaction of M(ClO4)2 · 6H2O with acetylhydrazine formed in situ by the reaction of hydrazine hydrate and acetylsalicylic acid methyl ester. The chelating behaviour of acetylhydrazine and overall geometry of these complexes have been spectroscopically investigated by means of FT-IR, 1H-n.m.r. and electronic spectral techniques, as well as by elemental analysis data, molar conductance values and magnetic susceptibility measurements. Single X-ray structure determination of complex (4) revealed three acetylhydrazine ligands coordinated to nickel ion in a bidentate manner maintaining an octahedral environment. In all other complexes too, an octahedral geometry has been proposed on the basis of results obtained by various physico-chemical studies.  相似文献   

20.
Summary The polarographic reduction at a dropping mercury electrode of several CuII, NiII and CoIII complexes of tetraaza macrocycles has been studied in 0.1M NaClO4 as supporting electrolyte. The CuII complexes show values of half-wave potentials which can be correlated to the ring size and ligand field stabilisation. A similar, though less marked, trend is noticeable in the reduction of the NiII complexes. No such conclusions can be drawn in the case of the CoIII complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号