首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Between repetitive analyses using gradient elution liquid chromatography the column must be reequilibrated to the initial conditions, extending run times. We studied the reequilibration time of three superficially porous silica columns compared to one fully porous silica column on a chromatograph with a reduced flush-out volume. Post-gradient acetone injections made at the interface of the pure organic-highly aqueous phase show anomalous, pressure-related band focusing, and increased retention compared to injections on either side of the interface. These anomalies are explained by applying the Buckley-Leverett theory of oil displacement in sands to column reequilibration. Reequilibration was shown to occur quickly, with less than three column volumes of conditioning solvent, and depends on the reproducibility as required by the application. Offline LC-GC was used to quantitate the percent acetonitrile eluting from each column post-gradient. After an initial, large expulsion of acetonitrile, a steady small amount (~0.03%) of acetonitrile is detected long after the column is considered equilibrated. The limiting variable with column equilibration is not the desorption of organic modifier from the stationary phase, but rather the pressure required to force the aqueous phase into the pores.  相似文献   

2.
We studied the run-to-run repeatability of the retention times of both non-ionizable and basic compounds chromatographed using buffered eluents. The effect of flow rate, organic modifier and other additives, buffer type/concentration, stationary phase type, batch-to-batch preparation of the initial eluent, gradient time, sample type and intra-day changes on retention repeatability were examined. We also assessed the effect of column storage solvent conditions on the inter-day repeatability. Although retention repeatability is strongly influenced by many parameters (flow rate, solvent compressibility compensation, precision of temperature control, and buffer/stationary phase type), our primary finding is that with a reasonable size column (15cmx4.6mm (i.d.)) two column volumes of re-equilibration with initial eluent suffices to provide acceptable repeatability (no worse than 0.004min) for both non-ionizable and basic analytes under a wide variety of conditions. Under ideal conditions (e.g. the right buffer, flow rate, etc.) it is possible to obtain truly extraordinary repeatability often as good as 0.0004min. These absolute fluctuations in retention translate to worst case changes in resolution of 0.2 units and average changes of only 0.02 units.  相似文献   

3.
A major disadvantage of gradient elution in terms of speed results from the need to adequately re-equilibrate the column. This work distinguishes two states of re-equilibration: (1) run-to-run repeatability and (2) full equilibration. We find that excellent repeatability (+/-0.002 min in retention time) is achieved with at most 2 column volumes of re-equilibration whereas full equilibration can require considerably more than 20 column volumes. We have investigated the effects of adding ancillary solvents (e.g. n-propanol, n-butanol) to the eluent and changing the particle pore size, initial eluent composition and type, column temperature and flow rate on the speed of full equilibration. Full equilibration seems to be more thermodynamically limited than kinetically controlled. Also, we show that the main limitation to reducing the full equilibration time is related to instrument design issues; a novel approach to overcome these instrumental issues is described.  相似文献   

4.
The retention volumes of solutes in countercurrent chromatography (CCC) are directly proportional to their distribution coefficients, K(D) in the biphasic liquid system used as mobile and stationary phase in the CCC column. The cocurrent CCC method consists in putting the liquid "stationary" phase in slow motion in the same direction as the mobile phase. A mixture of five steroid compounds of widely differing polarities was used as a test mixture to evaluate the capabilities of the method with the biphasic liquid system made of water/methanol/ethyl acetate/heptane 6/5/6/5 (v/v) and a 53 mL CCC column of the coil planet centrifuge type. It is shown that the chromatographic resolution obtained in cocurrent CCC is very good because the solute band broadening is minimized as long as the solute is located inside the "stationary" phase. Pushing the method at its limits, it is demonstrated that the five steroids can still be (partly) separated when the flow rate of the two liquid phases is the same (2 mL/min). This is due to the higher volume of upper phase (72% of the column volume) contained inside the CCC column producing a lower linear speed compared to the aqueous lower phase linear speed. The capabilities of the cocurrent CCC method compare well with those of the gradient elution method in HPLC. Continuous detection is a problem due to the fact that two immiscible liquid phases elute from the column. It was partly solved using an evaporative light scattering detector.  相似文献   

5.
The separation of several insect oostatic peptides (IOPs) was achieved by using CEC with a strong-cation-exchange (SCX) stationary phase in the fused-silica capillary column of 75 microm id. The effect of organic modifier, ionic strength, buffer pH, applied voltage, and temperature on peptides' resolution was evaluated. Baseline separation of the studied IOPs was achieved using a mobile phase containing 100 mM pH 2.3 sodium phosphate buffer/water/ACN (10:20:70 v/v/v). In order to reduce the analysis time, experiments were performed in the short side mode where the stationary phase was packed for 7 cm only. The selection of the experimental parameters strongly influenced the retention time, resolution, and retention factor. An acidic pH was selected in order to positively charge the analyzed peptides, the pI's of which are about 3 in water buffer solutions. A good selectivity and resolution was achieved at pH <2.8; at higher pH the three parameters decreased due to reduced or even zero charge of peptides. The increase in the ionic strength of the buffer present in the mobile phase caused a decrease in retention factor for all the studied compounds due to the decreased interaction between analytes and stationary phase. Raising the ACN concentration in the mobile phase in the range 40-80% v/v caused an increase in both retention factor, retention time, and resolution due to the hydrophilic interactions of IOPs with free silanols and sulfonic groups of the stationary phase.  相似文献   

6.
A polar-embedded stationary phase (ULTIMA C18) has been investigated for the separation of alpha-, beta-, gamma- and delta-tocopherols by CEC in comparison with commercially available C(18) and C(30) n-alkyl RPs. The behavior of this stationary phase was tested for different mobile phases based on methanol, ACN, or mixtures thereof and different separation parameters such as retention factors and resolution were evaluated. The main feature of this stationary phase is the improved selectivity for the separation of beta- and gamma-tocopherols (positional isomers) when compared with the pure n-alkyl C(18) material, which was unable to resolve these compounds. Additionally, it is possible to observe a reversal in the elution order of the beta- and gamma-tocopherol isomers with respect to that obtained on the C(30) column. The resulting data indicate that the enhanced selectivity obtained with the polar-embedded stationary phase, with respect to the conventional C(18) material, is due to the participation of both hydrophobic and polar interactions: these latter are of the hydrogen bridge type with the amide group of the polar-embedded stationary phase, which increases the retention of the tocopherols and facilitates the discrimination between the beta- and gamma-isomers. Adequate separation of the four tocopherols was obtained by CEC using the polar-embedded stationary phase and 95:5 v/v methanol/water (5 mM Tris, final concentration) as the mobile phase.  相似文献   

7.
In an effort to gain insight into the relationship between stationary phase solvation and selectivity, the use of short- and medium-chained-length alcohols (methanol, n-propanol, n-butanol, and n-pentanol) as mobile phase modifiers in reversed-phase liquid chromatography (RPLC) was investigated to determine their impact on chromatographic selectivity. A wide range of mobile phase compositions was evaluated because of the large effect exerted by solvent strength on selectivity. Employing a set of six vanillin compounds as retention probes, evidence is presented to support the view that an increase in the hydrophobicity of the organic modifier used in RPLC can increase the selectivity of the C18 alkyl bonded phase while simultaneously decreasing the retention time of the eluting solutes. Thus, we are presented with an interesting paradox: higher selectivity and shorter retention times, which can be attributed to changes in either solvent selectivity and/or stationary phase solvation by the organic modifier.  相似文献   

8.
The solvation parameter model system constants and retention factors were used to interpret retention properties of 39 calibration compounds on a biphenylsiloxane-bonded stationary phase (Kinetex biphenyl) for acetone-water binary mobile phase systems containing 30–70% v/v. Variation in system constants, phase ratios, and retention factors of acetone-water binary mobile phases systems were compared with more commonly used acetonitrile and methanol mobile phase systems. Retention properties of acetone mobile phases on a Kinetex biphenyl column were more similar to that of acetonitrile than methanol mobile phases except with respect to selectivity equivalency. Importantly, selectivity differences arising between acetone and acetonitrile systems (the lower hydrogen-bond basicity of acetone-water mobile phases and differences in hydrogen-bond acidity, cavity formation and dispersion interactions) could be exploited in reversed-phase liquid chromatography method development on a Kinetex biphenyl stationary phase.  相似文献   

9.
GC, including capillary GC, is rather inflexible, if a certain column length and stationary phase has been fixed for a given analytical problem. If the sample composition changes, one often has to change the column length and/or stationary phase, at least when something like optimum analytical conditions are needed. Temperature changes (or heating rates) can change the selectivity of a given column only within very limited ranges, due to the exponential effect of temperature on retention time. By serial coupling two chemically different capillaries, each run at another temperature, even the slightest changes of these two temperature values have a dramatic effect on the selectivity of the system for polar substances. We call this technique the SECAT mode of GC. Results are reported as retention index shifts, dependent on SECAT temperature data. This technique can in future easily be automated, thus enabling the analyst, for polar sample analysis, to adjust a given chroma-tographic system to his specific sample composition without touching the instrument.  相似文献   

10.
Reversed-phase liquid chromatography (RP-LC) retention data for 23 additional solutes have been acquired to further test and evaluate a general relationship from part I: log alpha = log (k/kref) = eta'H(i) + sigma'S(ii) beta'S(iii) + alpha'B(iv) +kappa'C(v) The physico-chemical origin of terms i-v above is examined here by comparing values of (a) the solute parameters of Eq. (1) (eta', sigma', etc.) vs. solute molecular structure, and (b) the column parameters (H, S, etc.) vs. column properties (ligand length and concentration, pore diameter, end-capping). We conclude that terms i-v correspond, respectively, to hydrophobic (i), steric (ii), hydrogen bonding (iii, iv) and ionic (v) interactions between solute and stationary phase. While steric interaction (term ii) is superficially similar to what previously has been defined as "shape selectivity", the role of the solute and column in determining steric selectivity (term ii) appears more complex than previously proposed for "shape selectivity". Similarly, what has previously been called hydrogen bonding between donor solutes and an acceptor group in the stationary phase (term iv) is very likely an oversimplification.  相似文献   

11.
The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral compounds on an octylsiloxane-bonded (Kinetex C8) and diisobutyloctadecylsiloxane-bonded (Kinetex XB-C18) superficially porous silica stationary phases for aqueous mobile phases containing 10–70% (v/v) methanol or acetonitrile. Electrostatic interactions (cation-exchange) are important for the retention of weak bases with acetonitrile–water but not for methanol–water mobile phases. Compared with an octadecylsiloxane-bonded silica stationary phase (Kinetex C18) retention is reduced due to a less favorable phase ratio for both the octylsiloxane-bonded and diisobutyloctadecylsiloxane-bonded silica stationary phases while selectivity differences are small and solvent dependent. Selectivity differences for neutral compounds are larger for methanol–water but significantly suppressed for acetonitrile–water mobile phases. The selectivity differences arise from small changes in all system constants with solute size and hydrogen-bond basicity being the most important due to their dominant contribution to the retention mechanism. Exchanging the octadecylsiloxane-bonded silica column for either the octylsiloxane-bonded or diisobutyloctadecylsiloxane-bonded silica column affords little scope for extending the selectivity space and is restricted to fine tuning of separations, and in some cases, to obtain faster separations due to a more favorable phase ratio. For weak bases larger differences in relative retention are expected with acetonitrile–water mobile phases on account of the additional cation exchange interactions possible that are absent for the octadecylsiloxane-bonded silica stationary phase.  相似文献   

12.
The stationary phases of octadecylsilica (ODS) coated with phospholipid have been developed as a model of artificial lipid membranes for liquid chromatographic columns. An ODS column coated with phospholipid can be readily prepared by recycling a solution containing L-alpha-dipalmitoyl-phosphatidylcholine (DPPC) through an ODS column in a closed loop. DPPC becomes absorbed on the ODS surfaces by hydrophobic interaction between the acyl group of DPPC and the octadecyl group of the ODS surfaces. The DPPC column was usable when a mobile phase containing 30% (v/v) acetonitrile was delivered without detachment of the DPPC from the ODS surfaces. The retention behavior of ionic solutes on the DPPC column suggested that the retention was based on both ionic and electrostatic interactions between the solutes and the stationary phase. The retention factors on the DPPC column correlated well with the partition coefficients in liposome systems for alpha-adrenoceptor agonists and beta-blockers, indicating that the partition of solutes between the coated phase and buffer was similar to that in the liposome/water system. The DPPC column can be used in screening studies to predict the binding properties of drugs onto lipid membranes.  相似文献   

13.
A series of polycyclic aromatic hydrocarbons (PAHs) of different size and shape has been used to characterize the chromatographic behavior of five calix[4]arene stationary phases in 1,3‐alternate conformation synthesized in our laboratory. The selection of linear, four‐ring nonlinear, and five‐ring PAHs gave data on selectivity changes across range of the calix[4]arene columns. Retention of the 12 aromatic solutes has been evaluated at various methanol contents in the mobile phase (70–100% v/v) and column temperatures (20–45°C). The thermodynamic parameters underlying the retention mechanisms revealed that each of the five calix[4]arene columns exhibited variation in selectivity and retention of PAHs caused by enthalpy and entropy effects. The calixarene stationary phases substituted with electron‐withdrawing groups exhibit enhanced selectivity toward PAHs in comparison to the rest of the investigated columns. The observed divergences are due to differences in solute–stationary phase interactions and originate in π–π and π‐electron transfer specific to the analytes and the type of calix[4]arene functionalization at the upper rim, as well as steric and sorption phenomena.  相似文献   

14.
The main feature of counter-current chromatography (CCC) is that the stationary phase is a liquid as well as the mobile phase. The retention volumes of solutes are directly proportional to their distribution coefficients K(D) in the biphasic liquid system used in the CCC column. Solutes with high K(D) coefficients are highly retained in the column. The back-extrusion method (BECCC) uses the fact that the liquid stationary phase, that contains the retained solutes, can be easily moved. Switching the column inlet and outlet ports without changing the liquid phase used as the mobile phase causes the rapid collapse of the two immiscible liquid phases inside the column, the previously stationary phase being gathered at the new column outlet. Then this previously stationary liquid phase is extruded outside the CCC column carrying the retained solutes. The back-extrusion method is tested with a standard mixture of five compounds and compared with the recently described elution-extrusion method. It is shown that the chromatographic resolution obtained during the back-extrusion step is good because the solute band broadening is minimized as long as the solute is located inside the "stationary" phase. However, a major drawback of the BECCC method is that all solutes are split between the liquid phases according to their distribution ratios when the CCC column equilibrium is broken. The change of flowing direction should be done after a sufficient amount of mobile phase has flushed the column in the classical mode, eluting solutes with small and medium distribution ratios. Otherwise, a significant portion of the solutes will stay in the mobile phase inside the column and produce a broad peak showing after the stationary phase extrusion.  相似文献   

15.
Porous zirconia particles are very robust material and have received considerable attention as a stationary phase support for HPLC. We prepared cellulose dimethylphenylcarbamate-bonded carbon-clad zirconia (CDMPCCZ) as a chiral stationary phase (CSP) for separation of enantiomers of a set of 14 racemic compounds in normal phase (NP) and reversed-phase (RP) liquid chromatography. Retention and enantioselectivity on CDMPCCZ were compared to those on CDMPC-coated zirconia (CDMPCZ) to see how the change in immobilization method of the chiral selector affects the retention and chiral selectivity. In NPLC, retention was longer and the number of resolved racemates was smaller on CDMPCCZ than on CDMPCZ. However, chiral selectivity factors for some resolved racemates were better on CDMPCCZ than on CDMPCZ. The longer retention on CDMPCCZ is likely due to strong, non-chiral discriminating interactions with the carbon layer on CDMPCZ. In RPLC only two racemates were resolved on CDMPCCZ, but retention times were shorter than, and resolutions were comparable to, those in NPLC, indicating a potential for improving chromatographic performance of the CDMPCCZ column in RPLC with optimized column preparation and separation conditions.  相似文献   

16.
The use of macroporous silica gels, silochroms, with homogeneous geometrical structure as adsorbents and supports for liquid stationary phases in liquid chromatography is described.

The selectivity of separation and retention volumes of silochroms depend strongly on the degree of hydroxylation of the surface and on the nature of the mobile phase. In optimizing the parameters, rapid and complete separation of strongly polar isomers and biological active substances and drugs is obtained.

The dependence of retention volumes and column efficiency on the amount of liquid phase, covered on silochrom, has been investigated.  相似文献   


17.
Most commercially available instruments for capillary electrochromatography (CEC) have a fixed configuration and lack the flexibility to use shorter columns. Applying a blended stationary phase (a phase consisting of a given ratio of bare silica and reversed phase material) can simulate columns of different length in CEC. The goal of this work was to examine the effect of the degree of blending of reversed-phase columns (with bare silica) on the speed of the separation of neutral compounds in CEC. Optimum column packing mixture was determined from the variation of the solute retention factors as a function of the ratios of blending of reversed-phase and bare silica. By adjusting the column composition, solute retention factors and the analysis run time were halved when compared to a pure reversed-phase column of the same length. Stationary phase blending can be considered as an additional parameter to mobile phase variation, column temperature and applied electric field for the optimization of selectivity and analysis time. By adjusting the stationary phase composition, mobile phase composition, column temperature and applied electric field, the analysis run time of neutral components was decreased more than 75% when compared to a separation obtained on neat reversed-phase column of the same dimensions. The linear dependence of the retention factors as a function of the blend ratio (reversed phase/bare silica) offers a framework for designing a “blended” packed capillary column for CEC separations.  相似文献   

18.
Li Y  Li J  Chen T  Liu X  Zhang H 《Journal of chromatography. A》2011,1218(11):1503-1508
The mixed sulfated/methacryloyl polysaccharide derivative was prepared and successfully immobilized onto the surface of porous silica particles by polymerization. Polysaccharide derivative was calculated as 10.33% in the stationary phase prepared. The new stationary phase (PMSP) showed both hydrophilic interaction (HILIC) and per aqueous liquid chromatography (PALC) characteristics. The effects of column temperature, the water content, pH and ion strength of mobile phase on the retention time of test compounds in highly aqueous eluents were investigated to evaluate the PALC features of PMSP. The column efficiency is about 31,000 plates/m for benzoic acid in water/ACN (97/3, v/v) mobile phase at a flow rate of 1.0 mL/min. Compared with C18 column, the PMSP had shorter retention time for weak polar and non-polar compounds, but also showed stronger retention for strong polar compounds. It indicated that PALC was a suitable mode of chromatography as replacement of HILIC and complementarity of reversed-phase liquid chromatography (RPLC).  相似文献   

19.
The solvation parameter model is used to elucidate the retention mechanism of neutral compounds on the pentafluorophenylpropylsiloxane-bonded silica stationary phase (Discovery HS F5) with methanol-water and acetonitrile-water mobile phases containing from 10 to 70% (v/v) organic solvent. The dominant factors that increase retention are solute size and electron lone pair interactions while polar interactions reduce retention. A comparison of the retention mechanism with an octadecylsiloxane-bonded silica stationary phase based on the same silica substrate and with a similar bonding density (Discovery HS C18) provides additional insights into selectivity differences for the two types of stationary phase. The methanol-water solvated pentafluorophenylpropylsiloxane-bonded silica stationary phase is more cohesive and/or has weaker dispersion interactions and is more dipolar/polarizable than the octadecylsiloxane-bonded silica stationary phase. Differences in hydrogen-bonding interactions contribute little to relative retention differences. For mobile phases containing more than 30% (v/v) acetonitrile selectivity differences for the pentafluorophenylpropylsiloxane-bonded and octadecylsiloxane-bonded silica stationary phases are no more than modest with differences in hydrogen-bond acidity of greater importance than observed for methanol-water. Below 30% (v/v) acetonitrile selectivity differences are more marked owing to incomplete wetting of the octadecylsiloxane-bonded silica stationary phase at low volume fractions of acetonitrile that are not apparent for the pentafluorophenylpropylsiloxane-bonded silica stationary phase. Steric repulsion affects a wider range of compounds on the octadecylsiloxane-bonded than pentafluorophenylpropylsiloxane-bonded silica stationary phase with methanol mobile phases resulting in additional selectivity differences than predicted by the solvation parameter model. Electrostatic interactions with weak bases were unimportant for methanol-water mobile phase compositions in contrast to acetonitrile-water where ion-exchange behavior is enhanced, especially for the pentafluorophenylpropylsiloxane-bonded silica stationary phase. The above results are compatible with a phenomenological interpretation of stationary phase conformations using the haystack, surface accessibility, and hydro-linked proton conduit models.  相似文献   

20.
填充柱超临界流体色谱系统中的溶剂效应   总被引:2,自引:0,他引:2  
陆峰  刘荔荔  吴玉田 《色谱》2000,18(2):155-157
 考察了填充柱超临界流体色谱法 (SFC)中的样品溶剂及连续进样等因素对化合物保留行为变化的影响规律。以超临界 CO2 或含低体积分数甲醇的 CO2 为流动相时 ,氨基柱上组分的保留时间随着样品溶剂的极性增大而增大 ,而溶剂对 C1 8柱上组分的保留时间影响不大 ;在 C1 8柱上 ,溶剂对连续进样的后续效应不强 ;而在氨基柱上 ,甲醇溶液的后续效应比丙酮、氯仿溶液的后续效应强。当甲醇的体积分数大于 1 .0 %时 ,溶剂的效应明显减弱。这种变化规律对填充柱 SFC的合理进样并获得重现性良好的色谱数据具有实际意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号