共查询到20条相似文献,搜索用时 13 毫秒
1.
Influence of phosphorus valency on thermal behaviour of flame retarded polyurethane foams 总被引:1,自引:0,他引:1
A. LorenzettiM. Modesti S. BescoD. Hrelja S. Donadi 《Polymer Degradation and Stability》2011,96(8):1455-1461
This paper reports decomposition/pyrolysis studies of polyurethane (PU) rigid foams containing phosphinate, phosphonate or phosphate as flame retardant in order to study the effect of phosphorus oxidation state on their gas and/or solid phase action. The flame retardants analyzed were aluminium phosphinate (IPA), dimethylpropanphosphonate (DMPP), triethylphosphate (TEP) and ammonium polyphosphate (APP), which differ in oxidation state and/or decomposition temperature. Gases evolved during TGA analyses as well as solid residues have been studied by means of MS and FTIR.The results show that phosphorus flame retardants which significantly lose weight at temperatures lower than those of neat PU foams act in the gas phase irrespective of their valency: indeed, they are completely volatilized before polymer decomposition starts and thus no interaction between flame retardant and polymer can be expected. The effect of phosphorus oxidation state becomes important when flame retardant decomposition takes place in the same temperatures range as neat polymer. In this case, it seems that at lower P oxidation state (+1) a combined gas and solid phase action takes place while at higher P oxidation state (+5) only solid phase action was observed. 相似文献
2.
Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites 总被引:1,自引:0,他引:1
The effect of polyol molecular weight and functionality on nanodispersion of clay in PU/clay nanocomposites and the investigation of their thermal and combustion properties are reported and discussed. Lamellar elastomer polyurethane nanocomposites were synthesized using polyols with different molecular weight and functionality and according to these parameters they show several degrees of dispersion which affect their thermal and combustion behaviour. A barrier effect of clay layer is shown in TGA experiments by a delay of thermal degradation products release in nanocomposite materials compared to the virgin polymer; this barrier effect also leads to formation of char during combustion which lowers the peak of rate of heat release in cone calorimeter tests and eliminates fire-induced dripping of the nanocomposite sample during UL 94 test. However, in order to achieve non-burning behaviour nanocomposite technology must be combined with conventional flame retardant technology. 相似文献
3.
Alessandra Lorenzetti Stefano Besco Denis Hrelja Martina Roso Emanuela Gallo Bernhard Schartel Michele Modesti 《Polymer Degradation and Stability》2013
Nanocomposites of a charring polymer (like polyurethane foam) filled with aluminum phosphinate (AlPi) with or without melamine cyanurate (MelCy) have been prepared by microwave processing and their thermal stability and fire behavior have been studied. Results on the interaction between flame retardants and layered silicates were provided as well as detailed investigation of the char strength, which has been carried out using a suitably developed method based on dynamic-mechanic analysis. 相似文献
4.
Functionalizing nano-montmorillonites by modified with intumescent flame retardant: Preparation and application in polyurethane 总被引:1,自引:0,他引:1
The 2-(2-(5,5-dimethyl-1,3,2-dioxaphosphinyl-2-ylamino)ethy-amino)-N,N,N-triethyl-2-oxoethanaminium chloride (compound c) containing phosphorus-nitrogen structure was synthesized and characterized. A novel intumescent flame retardant, namely montmorillonite (MMT) by modified with compound c (c-MMT), was prepared by ion exchanging of the nanometer Na+-montmorillonite (Na-MMT) with compound c. Both FTIR and X-ray diffraction (XRD) indicated that compound c had intercalated with Na-MMT and exfoliated c-MMT/PU nanocomposites have obtained by in-situ polymerization. TEM results further support the formation of the exfoliated nanocomposites. The thermal stability and flammability of c-MMT/PU composites were investigated by thermogravimetric analysis (TGA) and cone calorimeter test respectively. The results showed that the addition of flame retardant c-MMT enhanced the thermal stability and flame retardancy of PU significantly. SEM results indicated that c-MMT can achieve better dispersion in the chars after combustion and the compact and dense intumescent char is formed for c-MMT/PU composites after combustion. It is found that the char structure plays an important role for c-MMT in PU resin. The thermal stability and flame retardancy of PU resin were also significantly improved by an addition of c-MMT in PU resin. 相似文献
5.
Łukasz Piszczyk Magdalena Danowska Anna Mietlarek-Kropidłowska Magdalena Szyszka Michał Strankowski 《Journal of Thermal Analysis and Calorimetry》2014,118(2):901-909
This work presents thermal studies of nanocomposites based on the flexible polyurethane (PU) matrix and filled using montmorillonite organically modified with organophosphorus flame retardant compound. Flexible PU nanocomposite foams were prepared in the reaction carried out between reactive alcoholic hydroxyl and isocyanate groups with the ratio of NCO to OH groups equal to 1.05. The amount of an organoclay ranging from 3 to 9 vol% was added to the polyol component of the resin before mixing with isocyanate. The apparent density of PU foams was ranging from 0.066 to 0.077 g cm?1. Thermal properties of the flexible PU nanocomposite foams were investigated by thermogravimetry and dynamical mechanical analysis. Glass transition temperatures (T g) were defined as maximum peak on tanδ curve. Thermal decomposition was observed at 310–320 °C (calculated from the onset of TG curve). Tensile strength of the PU foams was determined using mechanical test. The microstructure of the nanoparticles and the composites was investigated by X-ray diffraction. Finally, it was confirmed that the thermal and mechanical properties of flexible PU nanocomposite depend on the amount of nanoclay. 相似文献
6.
A new flame retardant, i.e. expandable graphite (EG), has been used in polyisocyanurate-polyurethane (PIR-PUR) foams in order to improve fire behaviour of such foams. In order to obtain a completely halogen-free material, water-blown PIR-PUR foams have been prepared thus avoiding the use of hydrochlorofluorocarbons or hydrofluorocarbons. The influence of several EG amounts on physical-mechanical properties and fire performances of such foams has been analysed. The results obtained show that the use of EG affects significantly physical and mechanical properties, such as compression strength and thermal conductivity, particularly at very high EG content (25 wt.%), as it often happens in presence of fillers. The fire performances have been investigated by mean of cone calorimeter apparatus and oxygen index test; the results obtained show that the fire behaviour of PIR-PUR foams could be significantly improved by use of EG; in particular it has observed a dramatically decrease of rate of heat release even for relative low EG amount (15%). 相似文献
7.
Poly(butyl acrylate) (PBA)/sodium silicate (SS) nanocomposites were prepared via emulsifier-free emulsion technique in presence of Cu(II)/glycine chelate complex and ammonium persulfate (APS) initiator. The strongly hydrophobic PBA was intercalated into the hydrophilic SS layer. Since the interlayers of silicate were filled with sodium cations, the hydrophilic properties were enhanced and lead to high degree of swelling. The formation of the PBA/SS nanocomposite was confirmed by infrared spectra (IR). Furthermore, as evidenced by transmission electron microscopy (TEM), the composite so obtained was found to have nanoscale structure. X-ray diffraction (XRD) was used to characterize the nanoscale dispersion of the layer silicate and useful for measurement of d-spacing in interlayer system. It was found from thermogravimetric analysis that PBA/SS nanocomposites had more thermal stability as compared to raw PBA due to intercalation. Burning test of the nanocomposites performance exhibited a flame retardant property, which was also verified from cone calorimeter analysis. For its commercialization, the ecological friendly nature was studied via biodegradation and was found to have better biodegradability than the raw PBA. 相似文献
8.
Charles Manzi-Nshuti 《Polymer Degradation and Stability》2009,94(5):782-788
Polyethylene (PE) was modified by the addition of a layered double hydroxide of zinc aluminum oleate (ZnAl) and/or commercial fire retardants. Commercial additives included: melamine polyphosphate (MPP), ammonium polyphosphate (APP), triphenol phosphate (TPP), resorcinol diphosphate (RDP), decabromophenyl oxide (DECA) and antimony oxide (AO). The thermal stability and the combustion behaviors of the new composite polymeric materials are evaluated in TGA experiments and cone calorimetry. At 20% total additive loading, APP and LDH enhance the thermal stability of the PE composites and favor char formation. ZnAl leads to the best reduction in the peak of heat release rate (PHRR), 72%, while the combinations of PE with other additives give reductions in the range 20-40%. The combination of DECA and AO effectively increases the time to ignition and time to PHRR while LDH lowers these two parameters. APP and MPP on the other hand, do not affect the time to ignition, but they effectively increase the time to PHRR relative to the pristine polymer. 相似文献
9.
In this study, polyurethane/organically modified layered silicate (organoclay) nanocomposites were prepared through in situ polymerization in the presence of organoclay. Phase morphology of the polyurethane/organoclay nanocomposite was investigated by small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM). The results suggest that the inter-domain repeat distance decreased with the introduction of organoclay. The organoclay has a more significant effect on the inter-domain repeat distance at a low hard segment content. Also with the increase of the hard segment, the inter-domain repeat distance and domain size increased markedly. The size of hard domain of the polyurethane was found to be in the range of 12-32 nm in this case, and it keeps nearly unchanged with the clay content. It is suggested by AFM phase imaging technique that the hard domain can self-organize further to form spherical aggregates. The introduction of clay into the polyurethane matrix resulted in the decrease in the size of the spherical aggregates from ∼800 nm to ∼500 nm, indicating clay has an important effect on the aggregation behavior of hard domains. The effect of clay on the surface energy was examined by means of AFM and goniometry techniques. The results obtained by two methods are consistent, i.e., with the increase of clay content, the surface energy decreased due to the effect of organic modifier. 相似文献
10.
Hongxiang Chen Huizhen LuYu Zhou Maosheng ZhengChangmei Ke Danlin Zeng 《Polymer Degradation and Stability》2012,97(3):242-247
The effects of sepiolite modified with γ-aminopropyltriethoxylsilane (KH550-Sp) on thermal properties of polyurethane (PU) nanocomposites were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TG), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and tensile test. The DSC results showed that the glass transition temperature of hard segments in PU/KH550-Sp nanocomposite increased with the increase of KH550-Sp, because sepiolite restricted the formation of hydrogen bonding within hard segments of polyurethane. TG results revealed that the thermal stability of PU was improved by KH550-Sp, and the onset decomposition temperature for PU nanocomposites with a KH550-Sp content of 3 wt% was about 20 °C higher than that for pure PU. The tensile properties of pure PU and nanocomposites before and after ageing 120 °C for 72 h were determined, and it was observed that the percentage loss in tensile strength decreased with the addition of KH550-Sp because of an oxidation barrier of KH550-Sp confirmed by ATR-FTIR. 相似文献
11.
Xu Zhang Sen Li Zhi Wang Gaohui Sun Po Hu 《International Journal of Polymer Analysis and Characterization》2020,25(7):499-516
Abstract Flexible polyurethane foams (FPUFs) have been modified to contain layered double hydroxides (LDHs) by dihydrogen phosphate (H2PO4 ?). The thermal stability of the prepared foams has been characterized using thermogravimetric analysis (TGA) at 5, 10, 20, 30, and 40?°C/min heating rates. The experimental data indicate that the temperature range for the two pyrolysis stages of FPUF is about 212–350?°C and 350–565?°C, respectively. Integral programmed decomposition temperature (IPDT) has been calculated according to the measured data, which was found that the IPDT of the modified FPUF was increased to 526?°C. Additionally, the thermal stability of FPUF composite has been also evaluated by the activation energy (E) on the basis of the pyrolysis kinetics of FPUF composites during thermal decomposition using Coats–Redfern integral method. These results manifest that the presence of intercalated LDHs enhances the thermal stability of FPUF. 相似文献
12.
Ming Gao Weihong Wu Song Liu Yanxia Wang Tengfei Shen 《Journal of Thermal Analysis and Calorimetry》2014,117(3):1419-1425
A novel cheap macromolecular intumescent flame retardants (MIFR) was synthesized, and its structure was a macromolecule containing phosphorus characterized by IR. Rigid polyurethane foam (PUF) filled with MIFR as fire retardant additive was prepared. The effects of MIFR on properties such as density, compressive strength, flame-retardant behavior, thermal stability, and morphology of char were studied. The compressive strength of the MIFR-filled PUF increased initially and then decreased with further increase of MIFR content while its density straightly increased. Its flammability and burning behavior were characterized by UL 94 and limiting oxygen index (LOI). Twenty five percent of MIFR was doped into PUF to get 24.5 of LOI and UL 94 V-0. Activation energy for the decomposition of samples was obtained using Kissinger equation. The resultant data show that for PUF containing MIFR, compared with PUF, the mass loss, thermal stability, and the decomposition activation energy decreased, the char yield increased, which shows that MIFR can catalyze decomposition and carbonization of PUF to form an effective charring layer to protect the underlying substrate. 相似文献
13.
14.
《Journal of Analytical and Applied Pyrolysis》2011,90(2):244-249
The present investigation describes the preparation of nano-SiO2-phenolic novolac resin nanocomposite through in situ polymerisation. CP MAS 13C NMR and FTIR analyses indicate the formation of chemical linkage between the inorganic and organic components. The decomposition temperature of the nanocomposite is ∼70 °C higher than the neat phenolic resin. The char content of the nanocomposite at any intermediate temperature is higher than that of neat resin. The limiting oxygen index value of the neat resin is 38 whereas it is 43 for the nanocomposite. So, the nanocomposite possesses excellent flame retardant property. Both the nanocomposite and the neat resin were isothermally pyrolysed and the products were separated and identified using GC–MS. The decomposition product analysis shows a difference in the decomposition product distribution. This variation is discussed in the light of the proposed structure for the SiO2-phenolic nanocomposite. 相似文献
15.
Naturally occurring mixtures of hydromagnesite and huntite have found important industrial use. Their endothermic decomposition over a temperature range similar to that of commonly used polymers and their release of water and carbon dioxide, has led to such mixtures being successfully used as fire retardants. They have replaced aluminium hydroxide and magnesium hydroxide in many applications. The current understanding of the thermal decomposition mechanism of both minerals and their combination in natural mixtures has been reviewed and related to their fire retardant action. Both minerals contribute to the reduction in flammability of polymers although the extent of these interactions has not been fully investigated. However, the fire retardant mechanism of these minerals appears more complicated than either aluminium hydroxide or magnesium hydroxide. 相似文献
16.
Sawdust of Scots Pine sapwood was chemically modified with various alkyl- and phenylchlorophosphorus compounds. The formation of covalent bonds was confirmed with solid state CP-MAS 13C NMR.According to thermogravimetric analysis (TGA), all phosphorus compounds decreased the temperature for the maximum rate of pyrolysis (from 350 °C to max. 240 °C) and increased the char formation (from 25% to max. 54%). Variation of the alkyl groups (C2-C8) had no significant effect. Phenylphosphates decrease the temperature of pyrolysis more efficiently than the alkyl analogues, due to higher thermal stability. The order in which the phenylphosphorus compounds affect the pyrolysis of the modified sawdust is consistent with their acidity order: organophosphate > organophosphonate ? organophosphinate.All phosphorus compounds used in this study reduce the equilibrium moisture content (EMC). Whereas the results obtained with the dialkyl phosphates are relatively poor, significant reductions in EMC can be achieved with the phenylphosphorus compounds. 相似文献
17.
《先进技术聚合物》2018,29(9):2545-2552
Although hexagonal boron nitride (h‐BN) has presented a potential prospect in polymer composite fields, undesirable interfacial interaction with polymer matrix that generates serious aggregation of nanomaterials has suppressed its enhancement effect. Moreover, the chemically inert surface of h‐BN also makes the commonly used approach that improves the interfacial interaction between nanofillers and polymeric matrix invalid. Herein, the functionalized modification of chemically inert h‐BN was successfully fabricated by the adsorption of cetyl‐trimethylammonium bromide, with electrostatic interactions. The obtained h‐BN (cetyl‐trimethylammonium bromide‐BN) was well characterized by systematic tests and then added into thermoplastic polyurethane (TPU) matrix. The inclusion of functionalized h‐BN can dramatically improve thermal stability, flame retardant, and mechanical properties of TPU composites. With the incorporation of as low as 4.0 wt% nanofillers, maximal value of heat release rate and total heat release of TPU were reduced by 57.5% and 17.8%, compared with those of pure TPU, respectively. Moreover, tensile strength of TPU composite with a loading of 2.0 wt% was increased by 79.3% in comparison with that of neat TPU. The facile functionalized approach of chemically inert h‐BN paves the way for promising applications of h‐BN in the development of flame retardant polymer materials. 相似文献
18.
Magnetorheological (MR) materials are a group of smart materials which have the controllable magnetic properties with an external magnetic field. Magnetic foams, a specific type of MR solids, were synthesized from flexible polyurethane (PU) foams and carbonyl iron particles. Effects of the carbonyl iron particles on the thermal stability of the magnetic foams have been studied. Thermogravimetric analysis (TGA) was applied to characterize the thermal degradation process of the magnetic foams and then the apparent activation energy of degradation was calculated by using Ozawa's method [Ozawa T. A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan 1965; 38: 1881-1886.]. The carbonyl iron particles were found to improve the thermal stability of magnetic foams in nitrogen by showing higher 10 wt% loss temperature, slower weight loss rate and higher apparent activation energy than pure PU foams. But the magnetic foams were observed to have slightly worse thermal stability in air than pure PU foams at the earlier degradation stage. At the later degradation stage, the magnetic foams exhibited the higher activation energy than pure PU foams in air. 相似文献
19.
Chai Hua Duan Qiangling Jiang Lin Sun Jinhua 《Journal of Thermal Analysis and Calorimetry》2019,135(5):2857-2868
Journal of Thermal Analysis and Calorimetry - The effect of inorganic additive flame retardant on fire hazard of polyurethane exterior insulation material was experimentally investigated by the... 相似文献