首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structurally diverse bispropargyl ethers using resorcinol,quinol,4,4¢-dihydroxy biphenyl,bisphenol-A,4,4¢-dihydroxy diphenyl ketone,4,4¢-dihydroxy diphenylsulphone,trimethyl indane bisphenol and tetramethyl spirobiindane bisphenol were prepared by using phase transfer catalyst.Synthesized materials were separately blended with 4,4¢-bismaleimido diphenyl methane(BMIM)in mole ratios(0.5:0.5).The materials were thermally cured and the structural characterisation and the thermal properties of these cross-linked materials are investigated using Fourier-transform infrared(FTIR)spectrophotometer and thermogravimetric analyzer(TGA).Among the different materials investigated poly MRPE,poly MBPEBPA and poly MSPE show higher onset degradation temperature of 300°C indicating higher thermal stability.The degradation kinetics is investigated using Flynn-Wall-Ozawa(FWO),Vyazovkin(VYZ)and Friedman(FRD)methods.Amongst the various cured materials investigated,the activation energy(Ea-D)values obtained for poly MRPE and poly MKPE were observed to increase continuously froma=0.2 to 0.8 and the values range from 199 kJ/mol to 245 k J/mol and 153 k J/mol to 295 k J/mol respectively.The crosslinked materials resulting from these bispropargyl monomers definitely need more energy for bond cleavage due to the presence of more aromatic units.The volatile products obtained during the thermal degradation of the polymers were analyzed using thermogravimetric-Fourier transform infrared analyses(TG-FTIR).The phenols,substituted phenols,carbon monoxide,carbon dioxide and small amount of aniline were found to be the major products during thermal degradation of these cured blends.  相似文献   

2.
The miscibility, morphology, and thermal properties of poly(vinyl chloride) (PVC) blends with different concentrations of poly(methyl methacylate) (PMMA) have been studied. The interaction between the phases was studied by FTIR and by measuring the glass transition temperature (Tg) of the blends using differential scanning calorimetry. Distribution of the phases at different compositions was studied through scanning electron microscopy. The FTIR and SEM results show little interaction and gross phase separation. The thermogravimetric studies on these blends were carried out under inert atmosphere from ambient to 800 °C at different heating rates varying from 2.5 to 20 °C/min. The thermal decomposition temperatures of the first and second stage of degradation in PVC in the presence of PMMA were higher than the pure. The stabilization effect on PVC was found most significant with 10 wt% PMMA content in the PVC matrix. These results agree with the isothermal degradation studies using dehydrochlorination and UV-vis spectroscopic results carried out on these blends. Using multiple heating rate kinetics the activation energies of the degradation process in PVC and its blends have been reported.  相似文献   

3.
PVC was synthesized using a trichloroindenyltitanium-methylaluminoxane catalyst at room temperature, and its degradation was monitored along with a commercial sample at 160, 170 and 180 °C under air or nitrogen atmosphere. The process was followed by HCl evolution, yellowing index, colour formation and thermogravimetric analysis. The produced polymer had a lower molecular weight and higher surface area, compared with a commercial PVC, while 1H NMR and Tg values show minimal differences between materials. The HCl evolution degradation studies indicate that produced PVC has a lower thermal resistance than commercial PVC, while TGA reveals the opposite behaviour. Yellowing index and colour evaluation give evidence that nitrogen atmosphere and high surface area in produced PVC allow the polyene growth, whereas low surface area and air atmosphere generate shorter polyenes and chromophoric species. Differences in degradation performance are thought to be due to chemical origin, inherent morphology and differences in instrumentation.  相似文献   

4.
5.
The thermogravimetry (TGA) in nitrogen was measured for poly(tetramethyl-p-silphenylene)-siloxane (TMPS) fractions with narrow molecular weight distributions and for block copolymers of TMPS and dimethyl siloxane (DMS) with varying composition. The measurements were made with the Perkin-Elmer DCS IB-TGA attachment which consists of a Cahn electrobalance and a wire-wound furnace with programmable temperature controls. The weight loss curves for heating rates of 10, 20, and 40°C/min were analyzed using the method of Flynn and Wall. The analysis indicates that thermal degradation proceeds primarily by scission of the siloxane bond with an activation energy of 44 ± 3 kcal/mole for the uncatalyzed reaction and 13 ± 2 kcal/mole for the reaction occurring in the presence of residual catalyst. The thermal stability of the TMPS–DMS copolymer is impaired through increasing the concentration of the DMS component. Cyclic DMS trimer and TMPS monomer and dimer were observed by mass spectrometry which gave results consistent with the proposed mechanism of degradation.  相似文献   

6.
The influence of lignin on the thermal degradation of isotactic polypropylene, investigated by thermogravimetric analysis, is reported in this article. Polypropylene blends containing 5 and 15 wt% of lignin were prepared by mixing the components in a screw mixer. An increase in the thermal degradation temperature of the blends was observed as a function of lignin content, in both oxidative and non-oxidative conditions. The increase is noticeably marked for the experiments carried out in air atmosphere, where the interactions between the polypropylene and the lignin lead to the formation of a protective surface able to reduce the oxygen diffusion towards the polymer bulk. Morphological analyses were carried out with optical and electronic microscopy, to evaluate the degree of dispersion of the lignin in the polypropylene matrix. X-ray techniques were employed to study the influence of lignin on the structure of the blended polypropylene.  相似文献   

7.
Thermal degradation of poly(methyl-n-hexylsilane) in the solid state in absence of oxygen reveals formation of a cyclic pentamer between 150 and 250°C. Polymer is gradually degraded to an intermediate molecular weight distribution. The weight average of this new distribution is not only temperature-dependent, but is also a function of viscosity of the polymer and nature of chain ends. As no insolubles or Si? H groups are formed, the degradation mechanism is most likely a back-biting mechanism induced by active chain ends such as silyl anions or Si? Cl rather than a homolytic cleavage of the main chain. A concurrent intramolecular rearrangement reaction is also proposed. Moreover, this study proposes an explanation to the trimodal molecular weight distribution obtained by the Wurtz coupling of dichlorosilanes with molten sodium in refluxing toluene. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
Thermal decomposition of poly(bismaleimides) has been investigated by using programmed and isothermal thermogravimetric analysis (TGA) in nitrogen. Reaction rates and overall activation energies were calculated from isothermal weight less studies. For five aliphatic poly(bismaleimides) a linear correlation between the activation energies and the number of methylene groups in the sequence between the maleimide residues was found. Aliphatic poly(bismaleimides) follow first-order kinetic law up to a conversion of 60-70% having activation energies between 196 and 256 kj/mole. poly(2,4-bismaleimidotoluene) which was found to have in highest polymer decomposition temperature (PDT) did follow the first-order kinetics up to a conversion of 60% in contrast to other aromatic poly(bismaleimides). In addition to the TGA, the pyro-field ion mass spectra of the polymers were recorded and are discussed.  相似文献   

9.
The thermal degradation behaviour, in the absence of oxygen, of poly(p-methylstyrene) has been investigated. Monomer is the main product formed in the degradation process, together with different oligomers which have been identified and whose amounts have been determined. A reaction mechanism accounting for the formation of the degradation products, and similar to the mechanism established for polystyrene, is proposed. The main differences of the process comparing with polystyrene are the higher amount of monomer which is produced and the crosslinking structures which are formed at T < 400° C.  相似文献   

10.
杨杰 《高分子科学》2010,28(1):85-91
<正>The thermal degradation of poly(arylene sulfide sulfone)/N-methylpyrrolidone(PASS/NMP) crystal solvate was studied by thermogravimetric analysis(TGA) and was compared with pure PASS in order to determine the way in which the formation of the crystal solvate affected the thermal properties of the polymer.The activation energy of the solid state process was determined using Kissinger's method,which does not require knowledge of the reaction mechanism(RM),to be 174.18 kJ/mol which was lower than that for pure PASS(E=214 kJ/mol).The study of master curves together with interpretation of integral methods,allows confirmation that the thermal degradation mechanism for PASS in the crystal solvate system is a decelerated R_n type,which is a solid-state process based on a phase boundary controlled reaction,in the conversion range considered.Whereas,the pure PASS follows a decelerated D_n thermodegradation mechanism in the same conversion range.  相似文献   

11.
The thermal stability of a novel phosphorus-containing aromatic poly(ester-amide) ODOP-PEA was investigated by thermogravimetric analysis (TGA). The weight of ODOP-PEA fell slightly at the temperature range of 300-400 °C in the TGA analysis, and the major weight loss occurred at 500 °C. The structural identification of the volatile products resulted from the ODOP-PEA pyrolysis at different temperatures was performed by pyrolysis-gas chromatography/mass spectrometry (pyrolysis-GC/MS). The P-C bond linked between the pendant DOPO group and the polymer chain disconnected first at approximately 275 °C, indicating that it is the weakest bond in the ODOP-PEA. The P-O bond in the pendant DOPO group was stable up to 300 °C. The cleavage of the ester linkage within the polymer main chain initiated at 400 °C, and the amide bond scission occurred at greater than 400 °C. The structures of the decomposition products were used to propose the degradation processes happening during the pyrolysis of the polymer.  相似文献   

12.
The thermal stabilities of various poly(alkyl methacrylate) homopolymers and poly(methyl methacrylate-g-dimethyl siloxane) (PMMA-g-PSX) graft copolymers have been determined by thermogravimetric analysis (TGA). As expected, the thermal stabilities of poly(alkyl methacrylates) were a function of the ester alkyl group, and polymerization mechanism. In particular, thermally labile linkages, which result from termination during free radical or nonliving polymerization mechanisms, decrease the ultimate thermal stabilities of the polymers. However, graft copolymers, which were prepared by the macromonomer technique with free radical initiators, exhibited enhanced thermal stability compared to homopolymer controls. A more complex free radical polymerization mechanism for the macromonomer modified polymerization may account for this result. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
The nature and the extent of degradation of poly(hydroxy ether of bisphenol-A) phenoxy resin were analysed by thermogravimetry (TGA/DTGA) under nitrogen and air atmosphere. Decomposition kinetics were elucidated according to Flynn-Wall-Ozawa, Friedman and Kissinger methods. The evolved gases during degradation were inspected by a thermogravimetry analyser coupled with Fourier Transform Infrared Spectrometer (TGA/FTIR) and also with a TGA coupled to a Mass Spectrometer (TGA/MS). Mass spectra showed that chemical species evolved in phenoxy decomposition in air were very similar to those assigned from degradation in nitrogen (water, methane, CO, CO2, phenol, acetone, etc.). However, these species appear in different amount and at different temperatures in both atmospheres. FTIR analysis of the evolved products showed that water and methane were the beginning decomposition products, indicating that decomposition is initiated by dehydration and cleavage of C-CH3 bond in the bisphenol-A unit of phenoxy resin. After this initial stage, random chain scission is the main degradation pathway. Nevertheless, in air atmosphere, previously the complete decomposition of the phenoxy obtaining fundamentally CO2, and water, the formation of an insulated surface layer of crosslinked structures has been proposed.  相似文献   

14.
15.
Two-dimensional chromatography with gradient polymer elution chromatography in the first dimension and gel permeation chromatography in the second dimension was used to characterize a poly(styrene-b-butadiene) star block copolymer. The data evidence several populations that are clues left by the different steps in the sequential reaction employed to make the polymer. The sample was subjected to thermo-oxidative degradation at 180°C and was analyzed at different times during the process. After a relatively long induction period, the two-dimensional chromatograms show how the different populations are progressively degraded via random chain scission of the polybutadiene block to leave essentially polystyrene as the only soluble component. With longer thermal aging times, the polystyrene also degrades via chain scission.  相似文献   

16.
The influence of ethanolamine treatment of wood flour on the thermal degradation behaviour of PVC/wood flour composites was investigated. The decomposition of untreated and treated wood flour and PVC/wood flour composites was measured using thermogravimetric analysis (TGA). The TGA indicated an accelerated degradation of the composite after treatment in a temperature range between 240 and 350 °C. This was caused by a synergistic decomposition of treated wood flour and polymer. Additionally, the colour of the material was measured in order to analyse the effect of the treatment. The lightness of the composite was reduced with increasing ethanolamine concentration.  相似文献   

17.
Thermal degradation of poly(o-toluidine) (POT) reduced [base form (POT-EB)] and oxidized form [i.e. doped with salicylidine-aniline (SA) and/or salicylidine-o-aminophenol (SAP)] was investigated experimentally and computationally. The results of thermal (TGA) and differential thermal (DTG) gravimetric analysis suggest a higher thermal stability for the oxidized (SA or SAP-doped POT) than that for the respective reduced (POT-EB) chain. Non-isothermal degradation of the reduced POT matrix reveals hydrophilic nature about two times stronger than that for the oxidized form (SA and/or SAP-doped POT) under the same conditions. Molecular mechanics (MM+) calculations substantiate these observations. FTIR spectroscopic study of the calcined POT-EB showed that the quinoid (Q) ring (imino-structure) is thermally at least twice more stable than for that the benzenoid (B) rings (amino-structure) in the repeating unit of the polymer chain. Isothermal degradation curves [fraction decomposed () vs. degradation time (t in min)] of the polymers under investigation revealed that they are characteristically declaratory in shape.  相似文献   

18.
Reversible addition-fragmentation chain transfer polymerization at 70 °C in N,N-dimethylformamide was used to prepare poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) copolymers in various compositions to afford well-defined polymers with pre-determined molecular weight, narrow molecular weight distribution, and precise chain end structure. The copolymer compositions were determined by 1H NMR spectroscopy. The reactivity ratios of N-isopropylacrylamide (NIPAM) and N,N-dimethylacrylamide (DMA) were calculated as r NIPAM = 0.838 and r DMA = 1.105, respectively, by the extended Kelen–Tüdös method at high conversions. The lower critical solution temperature of PNIPAM can be altered by changing the DMA content in the copolymer chain. Differential scanning calorimetry and thermogravimetric analysis at different heating rates were carried out on these copolymers to understand the nature of thermal degradation and to determine its kinetics. Different kinetic models were applied to estimate various parameters like the activation energy, the order, and the frequency factor. These studies are important to understand the solid state polymer degradation of N-alkyl substituted polymers, which show great potential in the preparation of miscible polymer blends due to their ability to interact through hydrogen bonding.  相似文献   

19.
The thermal stability and the temperature at which maximum degradation yields are detected were quite similar for both poly(2-vinylpyridine) (P2VP) and poly(4-vinylpyridine) (P4VP). However, considerable differences among the thermal degradation products of both polymers were detected indicating a correlation between the polymer structure and the degradation mechanism. Direct pyrolysis mass spectrometry analyses revealed that P2VP degrades via a complex degradation mechanism, yielding mainly pyridine, monomer, and protonated oligomers, whereas depolymerization of P4VP takes place in accordance with the general thermal behaviour of vinyl polymers. The complex thermal degradation behaviour for P2VP is associated with the position of the nitrogen atom in the pyridine ring, with σ-effect.  相似文献   

20.
The thermal degradation of selected poly(alkyl methacrylates) at temperatures between 300 and 800 °C was investigated by pyrolysis gas chromatography. Quantitative characterization of the pyrolysis products yields insights into the mechanism for thermal degradation of poly(alkyl methacrylates) under these conditions. Unsaturated monomeric alkyl methacrylates, carbon dioxide, carbon monoxide, methane, ethane, methanol, ethanol, and propanol were formed during thermal degradation of poly(alkyl methacrylates).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号