共查询到20条相似文献,搜索用时 15 毫秒
1.
Juliana Aristéia de Lima 《European Polymer Journal》2008,44(4):1140-1148
In this work blends of poly(ethylene-co-vinyl alcohol) (EVOH) with different ethylene contents (27, 32, 38 and 44 mol%) and poly(methyl methacrylate) (PMMA) were prepared by mechanical mixing in the melted state. The miscibility and melting behavior as a function of blend composition and the ethylene content in EVOH copolymers were investigated by means of differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). The morphology of the cryofractured surfaces was examined by scanning electron microscopy (SEM). DSC and DMTA data show that EVOH/PMMA blends are immiscible, independent of EVOH and blend composition. The SEM analysis in agreement with DMTA analysis indicates that the morphology of phases depends on the blend composition, with phase inversion occurring as the concentration of one or other polymer component increases. However, the copolymer composition apparently does not affect the domain size distribution for blends containing 20 wt% of EVOH or 20 wt% of PMMA. A better phase adhesion is observed mainly for blends with 50 wt% of each polymer component. 相似文献
2.
Ageing behaviour of SBR/EVA blends due to the effects of heat, ozone, and gamma radiation was studied with reference to blend ratio, three crosslinking systems (sulfur, peroxide and mixed) and a compatibiliser (SEBS-g-MA). It was found that an increase in the EVA content of the blends enhanced the ageing characteristics. Among the different crosslinking systems, a peroxide cured system exhibited the best retention of properties even after severe ageing. Tensile strength of peroxide cured SBR/EVA blends increased slightly after ageing for three days at 70 °C due to continued crosslinking, whereas tensile strength of all blends decreased on ageing at 100 °C. Compatibilisation with SEBS-g-MA improved the thermal, gamma and water ageing resistance of SBR/EVA blends. 相似文献
3.
IR laser-induced, ablative decomposition of poly(vinyl chloride-co-vinyl acetate) was examined under different irradiation conditions and its volatile and solid products were characterized by mass spectroscopy, infrared spectroscopy, Raman spectroscopy and UV spectroscopy and EDX-measurements. The laser decomposition of the copolymer, compared with that of poly(vinyl acetate) and poly(vinyl chloride), is revealed to be a more efficient process leading to solid films with the proportion of Cl- and CH3C(O)O-groups controlled by irradiation conditions. 相似文献
4.
R.H. Krämer 《Polymer Degradation and Stability》2007,92(10):1795-1802
Composites of poly(ethylene-co-methacrylic acid) with 5 mass fraction percent of precipitated calcium carbonate nanoparticles were prepared by melt extrusion on a miniature melt-blender and medium-scale production equipment. The composites consisted mostly of isolated particles. The ultimate mechanical properties of the nanocomposites were consequently largely superior to composites with micron-sized filler. The calcium carbonate particles were shown to offer a large surface area for calcium salt formation during the thermal degradation of the material. This imparted a stabilizing effect to the copolymer that was comparable to the neutralization of the methacrylic acid units with calcium ions. The rate of calcium salt formation was fast at temperatures above 350 °C. Stearic acid surface coatings did not interfere significantly with the calcium salt formation. The oxidative stability of the composites was further largely improved by the formation of a diffusion barrier. 相似文献
5.
Poly(ethylene-co-tetrafluoroethylene) (PETFE) was pyrolyzed and the pyrolysis products formed from the ethylene-tetrafluoroethylene heterosequences were analyzed using gas chromatography/mass spectrometry (GC/MS). Major pyrolysis products were 3,3-difluoropropene (DFP), 3,3,4,4-tetrafluoro-1-butene (TFB), 1,1,2,2,3,3-hexafluorocyclopentane (HFCP), 1,1,2,2,3,3-hexafluorocyclohexane (HFCH), 1,1,2,2,3,3,4,4-octafluorocyclohexane (OFCH), and 3-trifluoromethyl-3,4,4,5,5-pentafluorocyclohexene (FMPFCH). Their formation mechanisms were proposed. Peak intensity ratios of HFCP, HFCH, and FMPFCH compared to OFCH increased as the pyrolysis temperature increased, while those of DFP, TFB, HFCP, and HFCH compared to tetrafluoroethylene decreased. Order of the relative abundances of the major pyrolysis products formed from PETFE was OFCH > HFCP > HFCH > TFB > DFP. The order may be due to the difference in bond energies of CH2-CH2, CF2-CH2, and CF2-CF2. Formation of the pyrolysis product through the CH2-CH2 bond cleavage was more favorable than those through the CF2-CH2 and CF2-CF2 ones. 相似文献
6.
A novel intumescent flame-retardant system containing metal chelates for polyvinyl alcohol 总被引:1,自引:0,他引:1
De-Long Wang 《Polymer Degradation and Stability》2007,92(8):1555-1564
A novel flame retardant containing phosphorous-nitrogen structure, the ammonium salt of 2-hydroxyl-5,5-dimethyl-2,2-oxo-1,3,2-dioxapho sphorinane (PNOH), was synthesized and its structure was characterized by 1H NMR and FTIR spectra. PNOH was used together with ammonium polyphosphate (APP) to prepare a novel intumescent flame retardant (IFR) for polyvinyl alcohol (PVA). When a few amounts (0.5%) of metal chelates were added, the flame retardancy of the IFR-PVA systems was significantly improved, having a high LOI value of 34.2 in a total IFR loading of 15 wt.%. In order to have an understanding of the resulting flame retardant effects, the thermal degradation behaviors of IFR-PVA systems were investigated by thermogravimetric analysis (TGA), and the morphology and structures of residues generated in different conditions were investigated by scanning electronic microscopy (SEM) and FTIR spectra. The results show that NiSAO can promote the thermal stability of the IFR-PVA; the residual char containing polyphosphoric or phosphoric acid is formed during the combustion; the formation of a continuous and dense char layer could inhibit the transmission of heat during contacting with flame and shows good flame retardancy. 相似文献
7.
Jadranka Blazevska-Gilev Jan Šubrt Josef Pola 《Polymer Degradation and Stability》2006,91(12):2834-2839
IR laser-induced ablative degradation of poly(ethylene-co-acrylic acid) zinc salt (PEAZn) leads to cleavage of both polyethylene backbone and CO2H group. It yields carbon oxides and volatile hydrocarbons (ethene as a major product) and affords ablative deposition of solid ionomeric films in which the initial ratio -CO2H/-CO2Zn is decreased due to higher thermal stability of the -CO2Zn group. The laser-induced process differs remarkably from conventional degradation of similar polyethylene chain-based metal methacrylate ionomers that are known to yield cold ring fraction containing only -CO2H group. The cleavage of the polyethylene backbone in the laser-induced degradation becomes more important at higher fluences. The presence of sodium metasilicate is shown to accelerate the decomposition of the CO2H group. 相似文献
8.
In this paper the photo-oxidation behaviour of polyolefin/clay nanocomposite films was studied; in particular, the effect of the amount of organo-modifier and the matrix polarity on the photo-oxidation was investigated. Two different organo-modified clays and compositions of LDPE/EVA blend films were used and the photo-oxidation was followed by mechanical and spectroscopic analyses.The organoclay and matrix type strongly influence the photo-oxidative behaviour of nanocomposite films. The films filled with CL15A show a faster loss of mechanical performance and higher carbonyl formation with respect to the films filled with the CL20A. Additionally, the LDPE based nanocomposite undergoes photo-oxidation more rapidly than the EVA based one. 相似文献
9.
Diffusion of small-molecule penetrants in semi-crystalline polymers is retarded by two factors: penetrant detour bypassing impenetrable crystals and the constraining effect of the crystals on the amorphous component. Previous experiments have shown that the latter factor becomes much less important at higher penetrant concentration in the polymer. Structural changes in a series of poly(ethylene-co-1-octene)s occurring on saturation in n-hexane at 296 K, covering a wide range of crystallinity (17-75 wt.%), were studied by wide-angle X-ray scattering, Raman spectroscopy and NMR spectroscopy. Densification of the crystal unit cell and partial dissolution of the interfacial component on n-hexane sorption are the main experimental findings. The conclusion is that the penetrant molecules increase the mobility of the polymer chain segments adjacent to the crystal interface, enabling better packing of the crystal stems and importantly also causes a reduction in the constraining factor (β) for diffusion. 相似文献
10.
A.I. Fernández L. Haurie J.M. Chimenos J.I. Velasco 《Polymer Degradation and Stability》2009,94(1):57-60
Low-grade magnesium hydroxide (LG-MH) is a solid by-product that undergoes an endothermic decomposition in the temperature range of 300-750 °C. Due to its thermal behaviour and its lower cost relative to pure Mg(OH)2, it was studied as a non-halogenated flame retardant filler in a 28% vinyl acetate (VA) content poly(ethylene-co-vinyl acetate) matrix. The solid was characterized by XRF and the crystalline phases determined by XRD, composed predominantly of Mg(OH)2 and calcium and magnesium carbonates. Particle size reduction was performed by both mechanical as well as air jet milling in order to optimize the particle size distribution.Composites with different filler concentrations were prepared to evaluate the mechanical properties and flame retardancy by means of limiting oxygen index tests. LOI was also determined in specimens filled with commercial flame-retardants to analyse the effectiveness of this solid. 相似文献
11.
Zhanguang Huang 《Polymer Degradation and Stability》2007,92(7):1193-1198
The hyperbranched polyphosphate acrylate (HPPA) was blended in different ratios with tri(acryloyloxyethyl) phosphate (TAEP) to obtain a series of UV curable intumescent flame retardant resins. The thermal degradation mechanism of their cured films in air was studied by thermogravimetric analysis and in situ Fourier-transform infrared spectroscopy. The results showed that the addition of HPPA reduced the initial decomposition temperature (Tdi) but increased the char residue. Moreover, the decomposition was considered to be divided into three stages: firstly the degradation of phosphate group, secondly ester group and finally alkyl chain. The morphological structure of the formed char was observed by scanning electron microscopy, demonstrating the formation mechanism of the intumescent charred crust. 相似文献
12.
Non-isothermal and isothermal crystallization behaviors of polystyrene-b-poly(ethylene-co-butene) (PSt-b-PEB) block copolymers with different compositions and chain lengths were investigated by differential scanning calorimetry (DSC). The results show that crystallization of PEB block is strongly dependent on the composition. Crystallization temperature (Tc), melting temperature (Tm) and fusion enthalpy (ΔHf) increase rapidly with PEB volume fraction (VE) for block copolymers with VE below 50%, but there is little change when PEB block becomes the major component. Glass transition temperature (Tg) of the PSt block and order-disorder transition temperature (TODT) of block copolymers also have a weak effect. The isothermal crystallization kinetics results show that Avrami exponent (n) was strongly dependent on the composition and crystallization temperature. For the block copolymers with VE below 38.7 vol%, the values of n vary between 0.9 and 1.3, indicating that crystallization is confined. For the PSt-b-PEB block copolymers with VE higher than 50%, fractionated crystallization behavior is usually observed. A two-step isothermal crystallization procedure is applied to these block copolymers. It is found that breakout crystallization occurs at higher Tc, but confined at lower Tc. Two overlapped melting peaks are observed for the block copolymers with fractionated crystallization behavior after two-step crystallization, and only the higher melting peak corresponding to breakout crystallization can be used to derive equilibrium melting temperature. 相似文献
13.
The polymer electrolytes based on poly N-vinyl pyrrolidone (PVP) and ammonium thiocyanate (NH4SCN) with different compositions have been prepared by solution casting technique. The amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. The shift in Tg values and the melting temperatures of the PVP-NH4SCN electrolytes shown by DSC thermo-grams indicate an interaction between the polymer and the salt. The dependence of Tg and conductivity upon salt concentration have been discussed. The conductivity analysis shows that the 20 mol% ammonium thiocyanate doped polymer electrolyte exhibit high ionic conductivity and it has been found to be 1.7 × 10−4 S cm−1, at room temperature. The conductivity values follow the Arrhenius equation and the activation energy for 20 mol% ammonium thiocyanate doped polymer electrolyte has been found to be 0.52 eV. 相似文献
14.
This paper describes the process of manufacturing a new nanocomposite material, which involves adding a carbon nanotube (CNT) to improve EVA's physical characteristics such as weak radiation resistance and thermal properties. We irradiated the prepared samples with doses of 50 kGy, 100 kGy and 200 kGy at a dose rate of 5 kGy/h and examined their thermogravimetric characteristics, activation energy, degradation progress, and CNT dispersion using a thermogravimetric analyzer (TGA), chemiluminescence (CL), and a field emission scanning electron microscope (FESEM). Experimental results indicated that the samples with a CNT had higher DTG 2nd peak temperatures than those without a CNT. Activation energy of the samples reduced as the irradiation dose and the CNT content increased. In the second CL experiment, the CL intensity rapidly declined as the temperature, irradiation dose and the CNT content increased. Finally, examination of the fracture surfaces in the FESEM experiment indicated that the lamella structure of the EVA changed as the irradiation dose increased. We were also able to observe that samples with a CNT were aggregated and dispersed in numerous lumps. 相似文献
15.
Hanwei Zhang 《Polymer Degradation and Stability》2006,91(9):1929-1936
The tri-component copolymer poly(lactide-co-glycolide-co-caprolactone) (PLGC) was synthesized to prepare nanoparticles by the modified spontaneous emulsification solvent diffusion method (modified-SESD method); and the method was also modified by using the Tween60 instead of poly(vinyl alcohol) (PVA) as dispersing agent. The obtained nanoparticles have spherical shape and good particle distribution with mean size in the range from 100 to 200 nm. The in vitro degradation behaviour of PLGC nanoparticles was investigated. It was found that PLGC nanoparticles could remain stable during the degradation with no agglomeration. Compared with PLA and PLGA nanoparticles, the degradation rate of PLGC nanoparticles is faster. After 9 weeks of hydrolysis, the Mn of PLGC is less by 10% of the original Mn. The mean radius of the nanoparticles increases from 68 nm to 80 nm continuously during the first stage, and after 4 weeks of degradation, the particles' size decreases gradually from 80 nm to about 40 nm. These results suggest that the PLGC nanoparticles may show degradation-controlled drug release behaviour and seem to be a promising drug delivery system. 相似文献
16.
Margarita G. Prolongo C. Arribas Catalina Salom Rosa M. Masegosa 《Journal of Thermal Analysis and Calorimetry》2007,87(1):33-39
Diglycidyl
ether of bisfenol-A (DGEBA)/poly(vinyl acetate) (PVAc)/poly(4-vinyl phenol)
brominated (PVPhBr) ternary blends cured with 4,4’-diaminodiphenylmethane
(DDM) were investigated by differential scanning calorimetry (DSC), dynamic
mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM).
Homogeneous (DGEBA+DDM)/PVPhBr networks with a unique T
g
are generated. Ternary blends (DGEBA+DDM)/PVAc/PVPhBr are initially miscible
and phase separate upon curing arising two T
gs
that correspond to a PVAc-rich phase and to epoxy network phase. Increasing
the PVPhBr content the T
gof
the PVAc phase move to higher temperatures as a consequence of the PVAc-PVPhBr
interactions. Different morphologies are generated as a function of the blend
composition. 相似文献
17.
Copolymer networks based on acrylonitrile (AN)/divinylbenzene (DVB) have been investigated by thermogravimetric analysis (TG) to evaluate their thermal stability in nitrogen atmosphere. Thermal stability was determined from TG-DTG curves to investigate the influence of AN and DVB in the synthesis of copolymers on the copolymer thermal properties. The TG and DTG curves of copolymers clearly show two thermodegradation stages. The solid residues produced after thermodegradation stages were analyzed by FTIR and elemental analysis (CHN). The decomposition temperatures were dependent on amount of AN and DVB used as the crosslinking agent. The degradation temperatures of copolymers were influenced by the diluent system during their synthesis. FTIR analyses indicate that the cyclization of the polymer proceeds before any mass loss. 相似文献
18.
It is known that the electrical volume resistivity of insulating polymers filled with conductive fillers suddenly decreases at a certain content of filler. This phenomenon is called percolation. Therefore, it is known that controlling resistivity in the semi-conductive region for carbon black (CB) filled composites is very difficult. When poly (ethylene-co-vinyl acetate) (EVA) is used as a matrix, the percolation curve becomes gradual because CB particles disperse well in EVA. In this study, the relationship between the dispersion state of CB particles and electrical resistivity for EVA/poly (L-lactic acid) (PLLA) filled with CB composite was investigated. The apparent phase separation was seen in the SEM photograph. It was predicted that the CB particles located into the EVA phase in the light of thermodynamical consideration, which was estimated from the wetting coefficient between polymer matrix and CB particles. The total surface area per unit mass of dispersed CB particles in the polymer blend matrix was estimated from small-angle X-ray scattering and the volume resistivity decreased with increasing CB content. The values of the surface area of CB particles in CB filled EVA/PLLA (25/75 wt%) and EVA/PLLA (50/50 wt%) polymer blends showed a value similar to that of the CB filled EVA single polymer matrix. In electrical volume resistivity measurement, moreover, the slopes of percolation curves of EVA/PLLA (25/75 wt%) and EVA/PLLA (50/50 wt%) filled with CB composite are similar to that of EVA single polymer filled with CB composite. As a result, it was found that CB particles selectively locate in the EVA phase, and then the particle forms conductive networks similar to the networks in the case of EVA single polymer used as a matrix. 相似文献
19.
The influence of poly(ethylene glycol) (PEG) plasticiser content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) was investigated using thermal analysis, swelling studies, scanning electron microscopy (SEM) and attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy revealed a shift of the CO peak from 1708 to 1731 cm−1, indicating that an esterification reaction had occurred upon heating, thus producing crosslinked films. Higher molecular weight PEGs (10,000 and 1000 Da, respectively), having greater chain length, producing hydrogel networks with lower crosslink densities and higher average molecular weight between two consecutive crosslinks. Accordingly, such materials exhibited higher swelling rates. Hydrogels crosslinked with a low molecular weight PEG (PEG 200) showed rigid networks with high crosslink densities and, therefore, lower swelling rates. Polymer:plasticizer ratio alteration did not yield any discernable patterns, regardless of the method of analysis. The polymer-water interaction parameter (χ) increased with increases in the crosslink density. SEM studies showed that porosity of the crosslinked films increased with increasing PEG MW, confirming what had been observed with swelling studies and thermal analysis, that the crosslink density must be decreased as the Mw of the crosslinker is increased. Hydrogels containing PMVE/MA/PEG 10,000 could be used for rapid delivery of drug, due to their low crosslink density. Moderately crosslinked PMVE/MA/PEG 1000 hydrogels or highly crosslinked PMVE/MA/PEG 200 systems could then be used in controlling the drug delivery rates. We are currently evaluating these systems, both alone and in combination, for use in sustained release drug delivery devices. 相似文献
20.
利用锥形量热仪(CONE)在35kW/m2热辐照条件下,并结合极限氧指数(LOI)和UL-94垂直燃烧测试方法对聚丙烯(PP)/乙烯-醋酸乙烯酯共聚物(EVA)/有机蒙脱土(OMMT)纳米复合材料和加入无卤复配阻燃剂制备的PP/EVA/OMMT/氢氧化铝(ATH)/三氧化二锑(AO)纳米复合阻燃材料的热释放速率、烟释放及材料在燃烧时的质量损失行为进行了研究。结果表明,添加5%(质量分数)OMMT可以提高PP/EVA复合材料的阻燃性能,燃烧时的热释放速率、质量损失率以及烟释放量减少,且OMMT与无卤复配阻燃剂之间可产生阻燃协同作用,使纳米复合阻燃材料的阻燃性能、热稳定性和抑烟性进一步增强。 相似文献