首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
This paper presents a study of the signal suppression and enhancement effects in assays based on HPLC-ESI-MS/MS detection. The major focus was to investigate the effect of signal suppression/enhancement of typical co-administered (concomitant) medications, i.e. naproxen and ibuprofen. The results demonstrate that the analyte and internal standard can experience signal enhancement up to a factor of ca 2.9 if the test analyte or internal standard co-elute with concomitant. Experimental results also demonstrate that the analyte and internal standard signal increased by a factor of ca 2.0 in the negative ion mode at physiological relevant levels of naproxen (100 microg/mL) and by a factor of ca 1.6 in the negative ion mode at physiological relevant level of ibuprofen (10 microg/mL) in both neat and plasma samples. Signal enhancement significantly increased when concomitant medications ionized in the same ion mode as the analyte and internal standard. To overcome signal enhancement or potential suppression from concomitant medications, a comprehensive HPLC method needs to be developed with sufficient separation of concomitant medication from the analyte and internal standard. Other means to reduce signal enhancement or potential suppression include switching ionization polarity and performing comprehensive sample clean-up to remove concomitant medications before analysis.  相似文献   

2.
The effect of liquid chromatography separation on liquid chromatography-tandem mass spectrometry (LC-MS-MS) signal response for the characterization of low-molecular-mass compounds in a complex matrix was investigated. Matrix induced signal suppression appears throughout the entire LC-MS-MS analysis of wheat forage extract, with greatest suppression occurring at early retention times. Experimental results show that co-elution of matrix components and analytes from the LC column may be most strongly attributed to column overloading rather than similar analyte and matrix retention behavior. As a result, two-dimensional (LC-LC) separation can be a highly effective approach to address signal suppression effects for the quantitative LC-MS-MS analysis of complex matrix samples.  相似文献   

3.
The application of LC separation and mobile phase additives in addressing LC-MS/MS matrix signal suppression effects for the analysis of pesticides in a complex environmental matrix was investigated. It was shown that signal suppression is most significant for analytes eluting early in the LC-MS analysis. Introduction of different buffers (e.g. ammonium formate, ammonium hydroxide, formic acid) into the LC mobile phase was effective in improving signal correlation between the matrix and standard samples. The signal improvement is dependent on buffer concentration as well as LC separation of the matrix components. The application of LC separation alone was not effective in addressing suppression effects when characterizing complex matrix samples. Overloading of the LC column by matrix components was found to significantly contribute to analyte-matrix co-elution and suppression of signal. This signal suppression effect can be efficiently compensated by 2D LC (LC-LC) separation techniques. The effectiveness of buffers and LC separation in improving signal correlation between standard and matrix samples is discussed.  相似文献   

4.
The application of LC separation and mobile phase additives in addressing LC-MS/MS matrix signal suppression effects for the analysis of pesticides in a complex environmental matrix was investigated. It was shown that signal suppression is most significant for analytes eluting early in the LC-MS analysis. Introduction of different buffers (e.g. ammonium formate, ammonium hydroxide, formic acid) into the LC mobile phase was effective in improving signal correlation between the matrix and standard samples. The signal improvement is dependent on buffer concentration as well as LC separation of the matrix components. The application of LC separation alone was not effective in addressing suppression effects when characterizing complex matrix samples. Overloading of the LC column by matrix components was found to significantly contribute to analyte-matrix co-elution and suppression of signal. This signal suppression effect can be efficiently compensated by 2D LC (LC-LC) separation techniques. The effectiveness of buffers and LC separation in improving signal correlation between standard and matrix samples is discussed.  相似文献   

5.
Solvent compatibility is a limiting factor for the success of two-dimensional liquid chromatography (2-D LC). In the second dimension, solvent effects can result in overpressures as well as in peak broadening or even distortion. A peak shape study was performed on a one-dimensional high-performance liquid chromatography (HPLC) system to simulate the impact of peak distorting solvent effects on a reversed-phase second dimension separation operated at high temperatures. This study includes changes in injection volume, solute concentration, column inner diameter, eluent composition and oven temperature. Special attention was given to the influence of high temperatures on the solvent effects. High-temperature HPLC (HT-HPLC) is known to enhance second dimension separations in terms of speed, selectivity and solvent compatibility. The ability to minimise the viscosity contrast between the mobile phases of both dimensions makes HT-HPLC a promising tool to avoid viscosity mismatch effects like (pre-)viscous fingering. In case of our study, viscosity mismatch effects could not be observed. However, our results clearly show that the enhancement in solvent compatibility provided by the application of high temperatures does not include the elimination of solvent strength effects. The additional peak broadening and distortion caused by this effect is a potential error source for data processing in 2-D LC.  相似文献   

6.
This paper presents a novel splitting method for liquid chromatography/mass spectrometry (LC/MS) application, which allows fast MS detection of LC-separated analytes and subsequent online analyte collection. In this approach, a PEEK capillary tube with a micro-orifice drilled on the tube side wall is used to connect with LC column. A small portion of LC eluent emerging from the orifice can be directly ionized by desorption electrospray ionization (DESI) with negligible time delay (6~10 ms) while the remaining analytes exiting the tube outlet can be collected. The DESI-MS analysis of eluted compounds shows narrow peaks and high sensitivity because of the extremely small dead volume of the orifice used for LC eluent splitting (as low as 4 nL) and the freedom to choose favorable DESI spray solvent. In addition, online derivatization using reactive DESI is possible for supercharging proteins and for enhancing their signals without introducing extra dead volume. Unlike UV detector used in traditional preparative LC experiments, this method is applicable to compounds without chromophores (e.g., saccharides) due to the use of MS detector. Furthermore, this splitting method well suits monolithic column-based ultra-fast LC separation at a high elution flow rate of 4 mL/min.
Figure
?  相似文献   

7.
In multi-analyte procedures, sufficient separation is important to avoid interferences, particularly when using liquid chromatography/mass spectrometry (LC/MS) because of possible ion suppression or enhancement. However, even using ultra-high-performance LC, baseline separation is not always possible. For development and validation of an LC/MS/MS approach for quantification of 140 antidepressants, benzodiazepines, neuroleptics, beta-blockers, oral antidiabetics, and analytes measured in the context of brain death diagnosis in plasma, the extent of ion suppression or enhancement of co-eluting analytes within and between the drug classes was investigated using atmospheric-pressure chemical ionization (APCI) or electrospray ionization (ESI). Within the drug classes, five analytes showed ion enhancement of over 25% and six analytes ion suppression of over 25% using APCI and 16 analytes ion suppression of over 25% using ESI. Between the drug classes, two analytes showed ion suppression of over 25% using APCI. Using ESI, one analyte showed ion enhancement of over 25% and five analytes ion suppression of over 25%. These effects may influence the drug quantification using calibrators made in presence of overlapping and thus interfering analytes. Ion suppression/enhancement effects induced by co-eluting drugs of different classes present in the patient sample may also lead to false measurements using class-specific calibrators made in absence of overlapping and thus interfering analytes. In conclusion, ion suppression and enhancement tests are essential during method development and validation in LC/MS/MS multi-analyte procedures, with special regards to co-eluting analytes.  相似文献   

8.
Influence of acidic eluent on retention behaviors of common anions and cations by ion-exclusion/cation-exchange chromatography (ion-exclusion/CEC) were investigated on a weakly acidic cation-exchange resin in the H(+)-form with conductivity. Sensitivities of analyte ions, especially weak acid anions (F(-) and HCOO(-)), were affected with degree of background conductivity level with pK(a1) (first dissociation constant) of acid in eluent. The retention behaviors of anions and cations were related to that of elution dip induced after eluting acid to separation column and injecting analyte sample. These results were largely dependent on the natures of acid as eluent. Through this study, succinic acid as the eluent was suitable for simultaneous separation of strong acid anions (SO(4)(2-), Cl(-), NO(3)(-) and I(-)), weak acid anions (F(-), HCOO(-) and CH(3)COO(-)), and cations (Na(+), K(+), NH(4)(+), Mg(2+) and Ca(2+)). The separation was achieved in 20 min under the optimum eluent condition, 20 mM succinic acid/2 mM 18-crown-6. Detection limits at S/N=3 ranged from 0.10 to 0.51 microM for strong acid anions, 0.20 to 5.04 microM for weak acid anions and 0.75 to 1.72 microM for cations. The relative standard deviations of peak areas in the repeated chromatographic runs (n=10) were in the range of 1.1-2.9% for anions and 1.8-4.5% for cations. This method was successfully applied to hot spring water containing strong acid anions, weak acid anions and cations, with satisfactory results.  相似文献   

9.
Ion-exclusion/anion-exchange chromatography(IEC/AEC) on a combination of a strongly basic anion-exchange resin in the OH——form with basic eluent has been developed.The separation mechanism is based on the ion-exclusion/penetration effect for cations and the anion-exchange effect for anions to anion-exchange resin phase.This system is useful for simultaneous separation and determination of ammonium ion(NH+4),nitrite ion(NO-2),and nitrate ion(NO-3) in water samples.The resolution of analyte ions can be manipulated by changing the concentration of base in eluent on a polystyrene-divinylbenzene based strongly basic anion-exchange resin column.In this study,several separation columns,which consisted of different particle sizes,different functional groups and different anion-exchange capacities,were compared.As the results,the separation column with the smaller anion-exchange capacity(TSKgel Super IC-Anion) showed well-resolved separation of cations and anions.In the optimization of the basic eluent,lithium hydroxide(LiOH) was used as the eluent and the optimal concentration was concluded to be 2 mmol/L,considering the resolution of analyte ions and the whole retention times.In the optimal conditions,the relative standard deviations of the peak areas and the retention times of NH+4,NO-2,and NO-3 ranged 1.28%-3.57% and 0.54%-1.55%,respectively.The limits of detection at signal-to-noise of 3 were 4.10 μmol/L for NH+4,1.87 μmol/L for NO-2 and 2.83 μmol/L for NO-3.  相似文献   

10.
We have designed a semi‐online liquid chromatography/matrix‐assisted laser desorption/ionization mass spectrometry (LC/MALDI‐MS) system to introduce eluent from a octadecylsilyl (ODS) group modified monolithic silica capillary chromatographic column directly onto a sample plate for MALDI‐MS analysis. Our novel semi‐online system is useful for rapidly and sensitively examining the performance of a monolithic capillary column. An additional advantage is the small elution volume of a monolithic capillary column, which allows delicate eluents, such as 1,1,1,3,3,3,‐hexafluoroisopropyl alcohol (HFIP), to be used to achieve cost‐effective analysis. Using the semi‐online LC/MALDI‐MS system, chromatographic separation of polymers by the monolithic column with different eluents was studied. Separation of poly(methyl methacrylate) and Nylon 6/6 showed that the column functioned via size‐exclusion separation when tetrahydrofuran or HFIP eluent was used. On the other hand, the separation behavior of Nylon 11 indicated a reversed‐phase mode owing to the interaction of the polymer with the modified ODS group in the column. Using tetrahydrofuran/methanol (1:1, v/v) as the eluent, the LC/MALDI‐MS spectra of poly(lactic acid), which contains both linear and cyclic polymer structures, showed that the column could separate the hydrophobic cyclic polymer and elute it out relatively slowly. The monolithic column functions basically via size‐exclusion separation; the reversed‐phase separation by interaction with the ODS functions may have less influence on column separation. The semi‐online monolithic capillary LC/MALDI‐MS method we have developed should provide a means of effectively analyzing synthetic polymers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Solvent systems for use with LC-MS often result in a compromise between chromatographic performance and mass spectrometric detection, exemplified here by a LC-MS/MS method development for the analysis of ephedrines in doping control. Ephedrines, frequently found in therapeutic and nutritional preparations, are among the most commonly administered doping agents in competitive sport. Improved separation of these hydrophilic, basic compounds, some of which are diastereoisomers, is achieved in reversed-phase LC by the use of a high pH mobile phase in order to suppress analyte ionisation, and thus alter their polarity, resulting in reduced peak tailing and enhanced retention. However, when coupled to an ESI-MS detector, this eluent composition generated a non-linear and poorly reproducible signal. APCI yielded greater stability and reproducibility and is here presented as an ion source for the analysis of basic compounds under conditions that suppress their ionisation. Errors as large as 49.3% were observed with ESI, compared with 15.4% generated using APCI, for pseudoephedrine over the calibration range (25-400 μg/mL) in urine with a simple dilution and injection of samples. These data highlight the importance of suitable MS conditions for stable performance, necessary for accurate quantification, without undue compromise to the LC separation.  相似文献   

12.
An on-line solvent (eluent) evaporator is used for reconcentrating a fraction from a first LC column before introduction into a second LC separation step, possibly involving another mobile phase. For pentane and pentane containing 10 % of dichloromethane, evaporation rates of 1 ml/min were achieved. On evaporating a volume of 6 ml, 2-ethylnaphthalene was retained to more than 75%. Separation of aliphatic and polyaromatic hydrocarbons in a linseed oil is shown as an application.  相似文献   

13.
Chromatographic parameters of reference signals employed in matched filter methods have been studied using numerical experiments to improve the signal-to-noise (S/N) ratios of small liquid chromatography (LC) peaks obtained with electrospray tandem mass spectrometers (MS-MS). These parameters include the width, shape, and S/N ratios of chromatographic peaks used as the reference signal profiles. Our results show the effect of reference peak widths on improving the S/N ratio of chromatographic peaks; the influence of reference peak shapes is negligible. To verify simulation results, various reference signals, including analyte peaks of high concentration standards, internal standard peaks, and artificial Gaussian peaks of different widths, have been employed to enhance signal peaks on real liquid chromatography-tandem mass spectrometry (LC-MS-MS) chromatograms via matched filter methods. Our experimental results demonstrate that the S/N ratio enhancement of chromatographic peaks agree with the simulation predictions. These findings, therefore, suggest that regardless of peak shape, a well-smooth peak with a width close to that of the analyte peak is an adequate reference signal, when matched filter methods are used to improve LC-MS-MS chromatograms. Nevertheless, all methods processed LC-MS-MS peaks in this study do not achieve the ideal improvement ratios estimated with simulation results. We attribute this deficiency to spike-like noise, which have considerable low frequency components riding on LC-MS-MS chromatograms. Matched filtering, which works as a low-pass filter in the frequency domain, cannot effectively eliminate low frequency flicker noise contributed by these spikes. In addition, simple median filtering does not provide adequate improvement despite being able to smooth out most spikes in the chromatograms.  相似文献   

14.
An experimental study of parameters influencing peak shapes in ion-exchange open tubular (OT) capillary electrochromatography (CEC) was conducted using adsorbed quaternary aminated latex particles as the stationary phase. The combination of separation mechanisms from both capillary electrophoresis and ion-exchange chromatography results in peak broadening in OT-CEC arising from both these techniques. The sources of peak broadening that were considered included the relative electrophoretic mobilities of the eluent co-ion and analyte, and resistance to mass transfer in both the mobile and stationary phases. The parameters investigated were the mobility of the eluent co-ion, column diameter, separation temperature and secondary interactions between the analyte and the stationary phase. The electromigration dispersion was found to influence peak shapes to a minor extent, indicating that chromatographic retention was the dominant source of dispersion. Improving the resistance to mass transfer in the mobile phase by decreasing the capillary diameter improved peak shapes, with symmetrical peaks being obtained in a 25 microm I.D. column. However, an increase in temperature from 25 degrees C to 55 degrees C failed to show any significant improvement. The addition of p-cyanophenol to the mobile phase to suppress secondary interactions with the stationary phase did not result in the expected improvement in efficiency.  相似文献   

15.
Matrix effect (ME) – ionisation suppression or enhancement – in liquid chromatography/electrospray ionisation mass spectrometry (LC/ESI‐MS) is caused by matrix components co‐eluting with the analytes. ME has a complex and not fully understood nature. ME is also highly variable from sample to sample making it difficult to compensate for. In this work it was studied whether the background ion signals in scanned mass spectra of the LC effluent at the retention time of the analyte offer some insight into the presence and extent of matrix effect. Matrix effects for six pesticides – thiabendazole, carbendazime, methomyl, aldicarb, imazalil and methiocarb – in garlic and onion samples used in the study varied from 1% (suppression 99%) to 127% (enhancement 27%) depending on the pesticide and sample. Also standards in solvent and solvent blanks were included in the study. The ions most strongly varying from sample to sample – and therefore best describing the changes in sample composition and ME – were selected for quantification according to principal component analysis (PCA) for all six pesticides under study. These ions were used to account for ME via partial least‐squares (PLS) regression. The calibration set was constructed from 19 samples and standards and the obtained calibration function was validated with seven samples and standards. The average errors from the test set were from 0.05 to 0.27 mg/kg for carbendazim and imazalil, respectively (the respective average pesticide concentrations were 0.22 and 0.88 mg/kg). The PLS results were significantly more accurate compared to the conventional solvent calibration resulting in average errors from 0.07 to 0.69 mg/kg for carbendazime and methiocarb, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Young TE  Ecker ST  Synovec RE  Hawley NT  Lomber JP  Wai CM 《Talanta》1998,45(6):1189-1199
Reversed phase high-performance liquid chromatography (RP-HPLC) is demonstrated for hydrophobic analytes such as aromatic hydrocarbons on a chemically bonded stationary phase and a mobile phase consisting of only water. Reversed phase liquid chromatography separations using a water-only mobile phase has been termed WRP-LC for water-only reversed phase LC. Reasonable capacity factors are achieved through the use of a non-porous silica substrate resulting in a chromatographic phase volume ratio much lower than usually found in RP-HPLC. Two types of bonded WRP-LC columns have been developed and applied. A brush phase was synthesized from an organochlorosilane. The other phase, synthesized from an organodichlorosilane, is termed a branch phase and results in a polymeric structure of greater thickness than the brush phase. A baseline separation of a mixture containing benzaldehyde, benzene, toluene, and ethyl benzene in less than 5 min is demonstrated using a water mobile phase with 12 000 plates generated for the unretained benzaldehyde peak. The theoretically predicted minimum reduced plate height is also shown to be approached for the unretained analyte using the brush phase. As an application, subcritical water extraction (SWE) at 200°C is combined with WRP-LC. This combination allows for the extraction of organic compounds from solid matrices immediately followed by liquid chromatographic separation of those extracted compounds all using a solvent of 100% water. We demonstrate SWE/WRP-LC by spiking benzene, ethyl benzene, and naphthalene onto sand then extracting the analytes with SWE followed by chromatographic separation on a WRP column. A sand sample contaminated with gasoline was also analyzed using SWE/WRP-LC. This extraction process also provides kinetic information about the rate of analyte extraction from the sand matrix. Under the conditions employed, analytes were extracted at different rates, providing additional selectivity in addition to the WRP-LC separation.  相似文献   

17.
The high performance liquid chromatography of polymers under limiting conditions of adsorption (LC LCA) separates macromolecules, either according to their chemical structure or physical architecture, while molar mass effect is suppressed. A polymer sample is injected into an adsorption-active column flushed with an adsorption promoting eluent. The sample solvent is a strong solvent which prevents sample adsorption. As a result, macromolecules of sample elute within the zone of their original solvent to be discriminated from other, non-adsorbing polymer species, which elute in the exclusion mode. LC LCA sample recovery has been studied in detail for poly (methyl methacrylate)s using a bare silica gel column and an eluent comprised toluene (adsorli) and tetrahydrofuran (desorli). Sample solvent was tetrahydrofuran. It was found that a large part of injected sample may be fully retained within the LC LCA columns. The amount of retained polymer increases with decreasing packing pore size and with higher sample molar masses and, likely, also with the column diameter. The extent of full retention of sample does not depend of sample volume. An additional portion of the injected desorli sample solvent (a tandem injection) does not fully eliminate full retention of the sample fraction and the reduced recovery associated with it. The injected sample is retained along the entire LC LCA column. The reduced sample recovery restricts applicability of many LC LCA systems to oligomers and to discrimination of the non-adsorbing minor macromolecular components of complex polymer mixtures from the adsorbing major component(s). The full retention of sample molecules within columns may also complicate the application of other liquid chromatographic methods, which combine entropic and enthalpic retention mechanisms for separation of macromolecules.  相似文献   

18.
The high‐performance liquid chromatography (HPLC) column is capable of enrichment/pre‐concentration of trace impurities in the mobile phase during the column equilibration, prior to sample injection and elution. These impurities elute during gradient elution and result in significant chromatographic peaks. Three types of purified water were tested for their impurity levels, and hence their performances as mobile phase, in HPLC followed by total ion current (TIC) mode of MS. Two types of HPLC‐grade water produced 3–4 significant peaks in solvent blanks while LC/MS‐grade water produced no peaks (although peaks were produced by LC/MS‐grade water also after a few days of standing). None of the three waters produced peaks in HPLC followed by UV‐Vis detection. These peaks, if co‐eluted with analyte, are capable of suppressing or enhancing the analyte signal in a MS detector. As it is not common practice to run solvent blanks in TIC mode, when quantification is commonly carried out using single ion monitoring (SIM) or single or multiple reaction monitoring (SRM or MRM), the effect of co‐eluting impurities on the analyte signal and hence on the accuracy of the results is often unknown to the analyst. Running solvent blanks in TIC mode, regardless of the MS mode used for quantification, is essential in order to detect this problem and to take subsequent precautions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The review discusses the pitfalls of the matrix effect in mass spectrometry detection hyphenated to liquid chromatography separation. Matrix effect heavily influences both qualitative and quantitative analyses, giving rise to suppression or enhancement of the signal. As generally recognised, the predominant cause is the presence of undesired components that co-elute in the chromatographic separation and alter the ionisation process. The interfering species can be components of the sample, compounds released during the pre-treatment/extraction process or reagents added to the mobile phase to improve chromatographic resolution. The different mechanisms proposed in literature to explain the suppression or the enhancement of the signal both in electrospray and atmospheric pressure chemical ionisations are presented and the results observed in the different experimental conditions are compared and discussed. All data together lead to conclude that the chemical properties of the target analyte, the kind of matrix, the matrix to analyte concentration ratio, the extraction process, the chromatographic conditions as well as the kind of the mass spectrometry instrumentation and the ionisation conditions can play a role. Likely all these potential causes act in a synergic way and the final effect observed is hardly due to only one of them. Depending on an unpredictable combination of conditions, signal suppression or enhancement can be observed. The review discusses the matrix effects observed in HPLC–MS and HPLC–MS/MS analysis proposes hypotheses to explain the observed behaviours and proposes methods and strategies to overcome the matrix effects.  相似文献   

20.
Arai K  Mori M  Hironaga T  Itabashi H  Tanaka K 《色谱》2012,30(4):404-408
A combination of hydrophilic interaction chromatographic(HILIC) column and a weakly acidic cation-exchange resin(WCX) column was used for simultaneous separation of inorganic anions and cations by ion chromatography(IC).Firstly,the capability of HILIC column for the separation of analyte ions was evaluated under acidic eluent conditions.The columns used were SeQuant ZIC-HILIC(ZIC-HILIC) with a sulfobetaine-zwitterion stationary phase(ZIC-HILIC) and Acclaim HILIC-10 with a diol stationary phase(HILIC-10).When using tartaric acid as the eluent,the HILIC columns indicated strong retentions for anions,based on ion-pair interaction.Especially,HILIC-10 could strongly retain anions compared with ZIC-HILIC.The selectivity for analyte anions of HILIC-10 with 5 mmol/L tartaric acid eluent was in the order of I-> NO-3 > Br-> Cl-> H2PO-4.However,since HILIC-10 could not separate analyte cations,a WCX column(TSKgel Super IC-A/C) was connected after the HILIC column in series.The combination column system of HILIC and WCX columns could successfully separate ten ions(Na+,NH+4,K+,Mg2+,Ca2+,H2PO-4,Cl-,Br-,NO-3 and I-) with elution of 4 mmol/L tartaric acid plus 8 mmol/L 18-crown-6.The relative standard deviations(RSDs) of analyte ions by the system were in the ranges of 0.02%-0.05% in retention times and 0.18%-5.3% in peak areas through three-time successive injections.The limits of detection at signal-to-noise ratio of 3 were 0.24-0.30 μmol/L for the cations and 0.31-1.2 μmol/L for the anions.This system was applied for the simultaneous determination of the cations and the anions in a vegetable juice sample with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号