首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. IntroductionConsider the nonlinear complementarity problem (NCP for short), which is to findan x E M" such thatwhere F: Wu - ac and the inequalities are taken componentwise. This problem havemany important applications in various fields. [13, 7, 5].Due to the less storage in computation, derivative--free descent method, which meansthe search direction used does not involye the Jacobian matrix of F, is popular infinding solutions of nonlinear complementarity Problems. We briefly view som…  相似文献   

2.
Based on a class of functions, which generalize the squared Fischer-Burmeister NCP function and have many desirable properties as the latter function has, we reformulate nonlinear complementarity problem (NCP for short) as an equivalent unconstrained optimization problem, for which we propose a derivative-free descent method in monotone case. We show its global convergence under some mild conditions. If $F$, the function involved in NCP, is $R_0$-function, the optimization problems has bounded level sets. A local property of the merit function is discussed. Finally,we report some numerical results.  相似文献   

3.
New NCP-Functions and Their Properties   总被引:7,自引:0,他引:7  
Recently, Luo and Tseng proposed a class of merit functions for the nonlinear complementarity problem (NCP) and showed that it enjoys several interesting properties under some assumptions. In this paper, adopting a similar idea to that of Luo and Tseng, we present new merit functions for the NCP, which can be decomposed into component functions. We show that these merit functions not only share many properties with the one proposed by Luo and Tseng but also enjoy additional favorable properties owing to their decomposable structure. In particular, we present fairly mild conditions under which these merit functions have bounded level sets.  相似文献   

4.
In this paper, we study restricted NCP functions which may be used to reformulate the nonlinear complementarity problem as a constrained minimization problem. In particular, we consider three classes of restricted NCP functions, two of them introduced by Solodov and the other proposed in this paper. We give conditions under which a minimization problem based on a restricted NCP function enjoys favorable properties, such as equivalence between a stationary point of the minimization problem and the nonlinear complementarity problem, strict complementarity at a solution of the minimization problem, and boundedness of the level sets of the objective function. We examine these properties for three restricted NCP functions and show that the merit function based on the restricted NCP function proposed in this paper enjoys favorable properties compared with those based on the other restricted NCP functions.  相似文献   

5.
Recently Tseng (Math Program 83:159–185, 1998) extended a class of merit functions, proposed by Luo and Tseng (A new class of merit functions for the nonlinear complementarity problem, in Complementarity and Variational Problems: State of the Art, pp. 204–225, 1997), for the nonlinear complementarity problem (NCP) to the semidefinite complementarity problem (SDCP) and showed several related properties. In this paper, we extend this class of merit functions to the second-order cone complementarity problem (SOCCP) and show analogous properties as in NCP and SDCP cases. In addition, we study another class of merit functions which are based on a slight modification of the aforementioned class of merit functions. Both classes of merit functions provide an error bound for the SOCCP and have bounded level sets.Member of Mathematics Division, National Center for Theoretical Sciences, Taipei Office. The author’s work is partially supported by National Science Council of Taiwan.  相似文献   

6.
In last decades, there has been much effort on the solution and the analysis of the nonlinear complementarity problem (NCP) by reformulating NCP as an unconstrained minimization involving an NCP function. In this paper, we propose a family of new NCP functions, which include the Fischer-Burmeister function as a special case, based on a p-norm with p being any fixed real number in the interval (1,+∞), and show several favorable properties of the proposed functions. In addition, we also propose a descent algorithm that is indeed derivative-free for solving the unconstrained minimization based on the merit functions from the proposed NCP functions. Numerical results for the test problems from MCPLIB indicate that the descent algorithm has better performance when the parameter p decreases in (1,+∞). This implies that the merit functions associated with p∈(1,2), for example p=1.5, are more effective in numerical computations than the Fischer-Burmeister merit function, which exactly corresponds to p=2. J.-S. Chen is a member of Mathematics Division, National Center for Theoretical Sciences, Taipei Office. J.-S. Chen’s work is partially supported by National Science Council of Taiwan.  相似文献   

7.
In this paper, we extend the one-parametric class of merit functions proposed by Kanzow and Kleinmichel [C. Kanzow, H. Kleinmichel, A new class of semismooth Newton-type methods for nonlinear complementarity problems, Comput. Optim. Appl. 11 (1998) 227-251] for the nonnegative orthant complementarity problem to the general symmetric cone complementarity problem (SCCP). We show that the class of merit functions is continuously differentiable everywhere and has a globally Lipschitz continuous gradient mapping. From this, we particularly obtain the smoothness of the Fischer-Burmeister merit function associated with symmetric cones and the Lipschitz continuity of its gradient. In addition, we also consider a regularized formulation for the class of merit functions which is actually an extension of one of the NCP function classes studied by [C. Kanzow, Y. Yamashita, M. Fukushima, New NCP functions and their properties, J. Optim. Theory Appl. 97 (1997) 115-135] to the SCCP. By exploiting the Cartesian P-properties for a nonlinear transformation, we show that the class of regularized merit functions provides a global error bound for the solution of the SCCP, and moreover, has bounded level sets under a rather weak condition which can be satisfied by the monotone SCCP with a strictly feasible point or the SCCP with the joint Cartesian R02-property. All of these results generalize some recent important works in [J.-S. Chen, P. Tseng, An unconstrained smooth minimization reformulation of the second-order cone complementarity problem, Math. Program. 104 (2005) 293-327; C.-K. Sim, J. Sun, D. Ralph, A note on the Lipschitz continuity of the gradient of the squared norm of the matrix-valued Fischer-Burmeister function, Math. Program. 107 (2006) 547-553; P. Tseng, Merit function for semidefinite complementarity problems, Math. Program. 83 (1998) 159-185] under a unified framework.  相似文献   

8.
We report a new method to construct complementarity functions for the nonlinear complementarity problem (NCP). Basic properties related to growth behavior, convexity and semismoothness of the newly discovered NCP functions are proved. We also present some variants, generalizations and other transformations of these NCP functions. Finally, we propose some interesting research directions that can be explored in the NCP research.  相似文献   

9.
In this article, we extend two classes of merit functions for the second-order complementarity problem (SOCP) to infinite-dimensional SOCP. These two classes of merit functions include several popular merit functions, which are used in nonlinear complementarity problem, (NCP)/(SDCP) semidefinite complementarity problem, and SOCP, as special cases. We give conditions under which the infinite-dimensional SOCP has a unique solution and show that all these merit functions provide an error bound for infinite-dimensional SOCP and have bounded level sets. These results are very useful for designing solution methods for infinite-dimensional SOCP.  相似文献   

10.
Based on NCP functions, we present a Lagrangian globalization (LG) algorithm model for solving the nonlinear complementarity problem. In particular, this algorithm model does not depend on some specific NCP function. Under several theoretical assumptions on NCP functions we prove that the algorithm model is well-defined and globally convergent. Several NCP functions applicable to the LG-method are analyzed in details and shown to satisfy these assumptions. Furthermore, we identify not only the properties of NCP functions which enable them to be used in the LG method but also their properties which enable the strict complementarity condition to be removed from the convergence conditions of the LG method. Moreover, we construct a new NCP function which possesses some favourable properties.  相似文献   

11.
In this paper we propose a class of merit functions for variational inequality problems (VI). Through these merit functions, the variational inequality problem is cast as unconstrained minimization problem. We estimate the growth rate of these merit functions and give conditions under which the stationary points of these functions are the solutions of VI. This work was supported by the state key project “Scientific and Engineering Computing”.  相似文献   

12.
On NCP-Functions   总被引:7,自引:0,他引:7  
In this paper we reformulate several NCP-functions for the nonlinear complementarity problem (NCP) from their merit function forms and study some important properties of these NCP-functions. We point out that some of these NCP-functions have all the nice properties investigated by Chen, Chen and Kanzow [2] for a modified Fischer-Burmeister function, while some other NCP-functions may lose one or several of these properties. We also provide a modified normal map and a smoothing technique to overcome the limitation of these NCP-functions. A numerical comparison for the behaviour of various NCP-functions is provided.  相似文献   

13.
Computing traffic equilibria with a general nonadditive route cost disutility function is considered in this paper. Following the user equilibrium (UE) condition, that is, no driver can unilaterally change route to achieve less travel costs, the traffic equilibrium problem (TEP) can be formulated as a nonlinear complementary problem (NCP). In this paper, we propose a semismooth Newton method with a penalized Fischer–Burmeister (PFB) NCP function to solve the NCP formulation of the TEP, and also, we investigate the properties of the proposed method. Numerical results are provided and compared with the classical TEP with additive route cost functions. The results show the algorithm can achieved substantially better performance than the existing approaches. A sensitivity analysis is also conducted to examine the parameter of the proposed nonadditive route cost function.  相似文献   

14.
非线性互补问题的一种新的光滑价值函数及牛顿类算法   总被引:6,自引:0,他引:6  
乌力吉  陈国庆 《计算数学》2004,26(3):315-328
A new smooth merit function was constructed for nonlinear complementarity problems (NCPs). Like as the merit function based on the famous FischerBurmeister function, the stationary point of the merit function is the solution of NCP when the function is only a P0-function, and the merit function has good coercive property. A damped Newton-type algorithm which based on the merit function was presented. The global and local superlinear or quadratic convergence results were obtained under suitable conditions. Furthermore, the finite termination property was obtained for affine case with P-matrix without using the hybrid switch technique or additional step as corrector Newton step as usual. Numerical results suggest that the method is promising.  相似文献   

15.
A popular approach to solving the nonlinear complementarity problem (NCP) is to reformulate it as the global minimization of a certain merit function over ℝn. A popular choice of the merit function is the squared norm of the Fischer-Burmeister function, shown to be smooth over ℝn and, for monotone NCP, each stationary point is a solution of the NCP. This merit function and its analysis were subsequently extended to the semidefinite complementarity problem (SDCP), although only differentiability, not continuous differentiability, was established. In this paper, we extend this merit function and its analysis, including continuous differentiability, to the second-order cone complementarity problem (SOCCP). Although SOCCP is reducible to a SDCP, the reduction does not allow for easy translation of the analysis from SDCP to SOCCP. Instead, our analysis exploits properties of the Jordan product and spectral factorization associated with the second-order cone. We also report preliminary numerical experience with solving DIMACS second-order cone programs using a limited-memory BFGS method to minimize the merit function. In honor of Terry Rockafellar on his 70th birthday  相似文献   

16.
In this paper, we propose a new smooth function that possesses a property not satisfied by the existing smooth functions. Based on this smooth function, we discuss the existence and continuity of the smoothing path for solving theP 0 function nonlinear complementarity problem ( NCP). Using the characteristics of the new smooth function, we investigate the boundedness of the iteration sequence generated by the non-interior continuation methods for solving theP 0 function NCP under the assumption that the solution set of the NCP is nonempty and bounded. We show that the assumption that the solution set of the NCP is nonempty and bounded is weaker than those required by a few existing continuation methods for solving the NCP  相似文献   

17.
In this paper we show the solvability of the expected residual minimization (ERM) formulation for the general stochastic linear complementarity problem (SLCP) under mild assumptions. The properties of the ERM formulation are dependent on the choice of NCP functions. We focus on the ERM formulations defined by the “min” NCP function and the penalized FB function, both of which are nonconvex programs on the nonnegative orthant.  相似文献   

18.
The Karush-Kuhn-Tucker (KKT) system of the variational inequality problem over a set defined by inequality and equality constraints can be reformulated as a system of semismooth equations via an nonlinear complementarity problem (NCP) function. We give a sufficient condition for boundedness of the level sets of the norm function of this system of semismooth equations when the NCP function is metrically equivalent to the minimum function; and a sufficient and necessary condition when the NCP function is the minimum function. Nonsingularity properties identified by Facchinei, Fischer and Kanzow, 1998, SIAM J. Optim. 8, 850–869, for the semismooth reformulation of the variational inequality problem via the Fischer-Burmeister function, which is an irrational regular pseudo-smooth NCP function, hold for the reformulation based on other regular pseudo-smooth NCP functions. We propose a new regular pseudo-smooth NCP function, which is piecewise linear-rational and metrically equivalent to the minimum NCP function. When it is used to the generalized Newton method for solving the variational inequality problem, an auxiliary step can be added to each iteration to reduce the value of the merit function by adjusting the Lagrangian multipliers only. This work is supported by the Research Grant Council of Hong Kong This paper is dedicated to Alex Rubinov on the occasion of his 65th Birthday  相似文献   

19.
By using the Fischer–Burmeister function to reformulate the nonlinear complementarity problem (NCP) as a system of semismooth equations and using Kanzow’s smooth approximation function to construct the smooth operator, we propose a smoothing trust region algorithm for solving the NCP with P 0 functions. We prove that every accumulation point of the sequence generated by the algorithm is a solution of the NCP. Under a nonsingularity condition, local Q-superlinear/Q-quadratic convergence of the algorithm is established without the strict complementarity condition. This work was partially supported by the Research Grant Council of Hong Kong and the National Natural Science Foundation of China (Grant 10171030).  相似文献   

20.
The nonlinear complementarity or NCP functions were introduced by Mangasarian and these functions are proved to be useful in constrained optimization and elsewhere. Interestingly enough there are only two general methods to derive such functions, while the known or used NCP functions are either individual constructions or modifications of the few individual NCP functions such as the Fischer-Burmeister function. In the paper we analyze the elementary properties of NCP functions and the various techniques used to obtain such functions from old ones. We also prove some new nonexistence results on the possible forms of NCP functions. Then we develop and analyze several new methods for the construction of nonlinear complementarity functions that are based on various geometric arguments or monotone transformations. The appendix of the paper contains the list and source of the known NCP functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号