首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a delayed predator-prey system. We first consider the existence of local Hopf bifurcations, and then derive explicit formulas which enable us to determine the stability and the direction of periodic solutions bifurcating from Hopf bifurcations, using the normal form theory and center manifold argument. Special attention is paid to the global existence of periodic solutions bifurcating from Hopf bifurcations. By using a global Hopf bifurcation result due to Wu [Trans. Amer. Math. Soc. 350 (1998) 4799], we show that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of delay. Finally, several numerical simulations supporting the theoretical analysis are also given.  相似文献   

2.
In this paper, we consider a delayed two-competitor/one-prey system in which both two competitors exhibit Holling II functional response. By choosing the time delay as a bifurcation parameter, it is found that the Hopf bifurcation occurs when the delay passes through a certain critical value. Numerical simulations are performed to illustrate the analytical results.  相似文献   

3.
We consider a delayed predator-prey system with Beddington-DeAngelis functional response. The stability of the interior equilibrium will be studied by analyzing the associated characteristic transcendental equation. By choosing the delay τ as a bifurcation parameter, we show that Hopf bifurcation can occur as the delay τ crosses some critical values. The direction and stability of the Hopf bifurcation are investigated by following the procedure of deriving normal form given by Faria and Magalhães. An example is given and numerical simulations are performed to illustrate the obtained results.  相似文献   

4.
The purpose of this paper is to study a non-Kolmogrov type prey-predator system. First, we investigate the linear stability of the model by analyzing the associated characteristic equation of the linearized system. Second, we show that the system exhibits the Hopf bifurcation. The stability and direction of the Hopf bifurcation are determined by applying the norm form theory and center manifold theorem. Finally, numerical simulations are performed to illustrate the obtained results.  相似文献   

5.
A viral infection model with nonlinear incidence rate and delayed immune response is investigated. It is shown that if the basic reproduction ratio of the virus is less than unity, the infection-free equilibrium is globally asymptotically stable. By analyzing the characteristic equation, the local stability of the chronic infection equilibrium of the system is discussed. Furthermore, the existence of Hopf bifurcations at the chronic infection equilibrium is also studied. By means of an iteration technique, sufficient conditions are obtained for the global attractiveness of the chronic infection equilibrium. Numerical simulations are carried out to illustrate the main results.  相似文献   

6.
This work represents Hopf bifurcation analysis of a general non-linear differential equation involving time delay. A special form of this equation is the Hutchinson–Wright equation which is a mile stone in the mathematical modeling of population dynamics and mathematical biology. Taking the delay parameter as a bifurcation parameter, Hopf bifurcation analysis is studied by following the theory in the book by Hazzard et al. By analyzing the associated characteristic polynomial, we determine necessary conditions for the linear stability and Hopf bifurcation. In addition to this analysis, the direction of bifurcation, the stability and the period of a periodic solution to this equation are evaluated at a bifurcation value by using the Poincaré normal form and the center manifold theorem. Finally, the theoretical results are supported by numerical simulations.  相似文献   

7.
In this paper, the Leslie-Gower predator-prey system with two delays is investigated. By choosing the delay as a bifurcation parameter, we show that Hopf bifurcations can occur as the delay crosses some critical values. In addition, special attention is paid to the global continuation of local Hopf bifurcations. Using a global Hopf bifurcation theorem for functional differential equations, we show the global existence of periodic solutions.  相似文献   

8.
In this paper, Hopf bifurcation for two-species Lotka–Volterra competition systems with delay dependence is investigated. By choosing the delay as a bifurcation parameter, we prove that the system is stable over a range of the delay and beyond that it is unstable in the limit cycle form, i.e., there are periodic solutions bifurcating out from the positive equilibrium. Our results show that a stable competition system can be destabilized by the introduction of a maturation delay parameter. Further, an explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is derived by using the theory of normal forms and center manifolds, and numerical simulations supporting the theoretical analysis are also given.  相似文献   

9.
In this paper, a class of delayed predator-prey model of prey dispersal in two-patch environments is considered. By analyzing the associated characteristic transcendental equation, its linear stability is investigated and Hopf bifurcation is demonstrated. Some explicit formulae determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using the normal form theory and center manifold theory. Some numerical simulation for justifying the theoretical analysis are also provided. Finally, biological explanations and main conclusions are given.  相似文献   

10.
The increasing time delay usually destabilizes any dynamical system. In this paper we give an example that in some special cases the opposite effect can be experienced if the time delay is sufficiently great. We investigate the effect of both the parameter in the time delay kernel and diffusion coefficient on the stability of the positive steady state for a diffusive prey-predator system with delay. We obtain the condition of the occurrence of the stability switches of the positive steady state.  相似文献   

11.
We consider a 1-dimensional reaction-diffusion equation with nonlinear boundary conditions of logistic type with delay. We deal with non-negative solutions and analyze the stability behavior of its unique positive equilibrium solution, which is given by the constant function u≡1. We show that if the delay is small, this equilibrium solution is asymptotically stable, similar as in the case without delay. We also show that, as the delay goes to infinity, this equilibrium becomes unstable and undergoes a cascade of Hopf bifurcations. The structure of this cascade will depend on the parameters appearing in the equation. This equation shows some dynamical behavior that differs from the case where the nonlinearity with delay is in the interior of the domain.  相似文献   

12.
A generalized model of the two-neuron network with mixed delays is studied. The main purpose of this paper is to explore the linear stability of the trivial solution and Hopf bifurcation of a two-neuron network with continuous and discrete delays. The general formula of the direction, the estimation formula of period and stability of bifurcated periodic solutions are also studied. Finally, the numerical simulations are given to illustrate the theoretical analysis.  相似文献   

13.
A predator–prey system with stage structure for the predator and time delay due to the gestation of the predator is investigated. By analyzing the corresponding characteristic equations, the local stability of a positive equilibrium and two boundary equilibria of the system is discussed, respectively. Further, the existence of a Hopf bifurcation at the positive equilibrium is also studied. By using an iteration technique and comparison argument, respectively, sufficient conditions are derived for the global stability of the positive equilibrium and one of the boundary equilibria of the proposed system. As a result, the threshold is obtained for the permanence and extinction of the system. Numerical simulations are carried out to illustrate the main results.  相似文献   

14.
In the machining process, unstable self-excited vibrations known as regenerative chatter can occur, causing excessive tool wear or failure, and a poor surface finish on the machined workpiece, hence the relevant measures must be taken to predict and avoid this phenomenon of instability. In this paper, we propose a weakly nonlinear model with square and cubic terms in both structural stiffness and regenerative terms, to represent self-excited vibrations in machining. It is proved that Hopf bifurcation exists when bifurcation parameter equals a critical value, a formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are given by using the normal form method and center manifold theorem. Numerical simulations show excellent agreement with the theoretical results.  相似文献   

15.
This paper is concerned with a predator-prey system with Holling type IV functional response and time delay. Our aim is to investigate how the time delay affects the dynamics of the predator-prey system. By choosing the delay as a bifurcation parameter, the local asymptotic stability of the positive equilibrium and existence of local Hopf bifurcations are analyzed. Based on the normal form and the center manifold theory, the formulaes for determining the properties of Hopf bifurcation of the predator-prey system are derived. Finally, to support these theoretical results, some numerical simulations are given to illustrate the results.  相似文献   

16.
A reaction-diffusion model with logistic type growth, nonlocal delay effect and Dirichlet boundary condition is considered, and combined effect of the time delay and nonlocal spatial dispersal provides a more realistic way of modeling the complex spatiotemporal behavior. The stability of the positive spatially nonhomogeneous positive equilibrium and associated Hopf bifurcation are investigated for the case of near equilibrium bifurcation point and the case of spatially homogeneous dispersal kernel.  相似文献   

17.
In this paper, we consider a model described the survival of red blood cells in animal. Its dynamics are studied in terms of local and global Hopf bifurcations. We show that a sequence of Hopf bifurcations occur at the positive equilibrium as the delay crosses some critical values. Using the reduced system on the center manifold, we also obtain that the periodic orbits bifurcating from the positive equilibrium are stable in the center manifold, and all Hopf bifurcations are supercritical. Further, particular attention is focused on the continuation of local Hopf bifurcation. We show that global Hopf bifurcations exist after the second critical value of time delay.  相似文献   

18.
In this paper, we consider the classical mathematical model with saturation response of the infection rate and time delay. By stability analysis we obtain sufficient conditions for the global stability of the infection-free steady state and the permanence of the infected steady state. Numerical simulations are carried out to explain the mathematical conclusions.  相似文献   

19.
In this paper, we analyze the stability and Hopf bifurcation of the biological economic system based on the new normal form and the Hopf bifurcation theorem. The basic model we consider is owed to a ratio-dependent predator-prey system with harvesting, compared with other researches on dynamics of predator-prey population, this system is described by differential-algebraic equations due to economic factor. Here μ as bifurcation parameter, it is found that periodic solutions arise from stable stationary states when the parameter μ increases close to a certain limit. Finally, numerical simulations illustrate the effectiveness of our results.  相似文献   

20.
In this paper, we investigate the stability and Hopf bifurcation of a new regulated logistic growth with discrete and distributed delays. By choosing the discrete delay τ as a bifurcation parameter, we prove that the system is locally asymptotically stable in a range of the delay and Hopf bifurcation occurs as τ crosses a critical value. Furthermore, explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is derived by normal form theorem and center manifold argument. Finally, an illustrative example is also given to support the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号