首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Typical mobile phase employed in hydrophobic interaction chromatography contains cosmotropic salts, which promote retention and simultaneously reduce the protein solubility in the mobile phase. To increase mass overloading in the separation process the protein can be dissolved in a sample-solvent with concentration of salt lower than that in the mobile phase or in salt free solutions. However, this methodology may cause band splitting and band deformation, which results in yield losses. In this study, these phenomena were analyzed based on the retention behavior of two model proteins, i.e., lysozyme and bovine serum albumin. Retention of these proteins was accompanied by strong band broadening originated from slow rates of mass transfer and/or of adsorption–desorption process involving the protein conformational changes. The mass transport resistances and unfolding kinetics were found to contribute to the sample-solvent effects. To avoid band deformations the process variables such as the salt concentration and temperature were adjusted in such a way that complete resolution between band profile of the sample-solvent and the protein was achieved. For the process simulation a dynamic model, which accounted for underlying kinetics was used. General guidelines of the process design were developed.  相似文献   

2.
More than 40 years ago, Giddings pointed out in “Dynamics of Chromatography” that surface diffusion should become an important research topic in the kinetics of chromatographic phenomena. However, few studies on surface diffusion in adsorbents used in chromatography were published since then. Most scientists use ordinary rate equations to study mass transfer kinetics in chromatography. They take no account of surface diffusion and overlook the significant contributions of this mass transfer process to chromatographic behavior and to column efficiency at high mobile phase flow rate. Only recently did the significance of surface diffusion in separation processes begin to be recognized in connection with the development of new techniques of fast flow, high efficiency chromatography. In this review, we revisit the reports on experimental data on surface diffusion and introduce a surface-restricted molecular diffusion model, derived as a first approximation for the mechanism of surface diffusion, on the basis of the absolute rate theory. We also explain how this model accounts for many intrinsic characteristics of surface diffusion that cannot properly be explained by the conventional models of surface diffusion.  相似文献   

3.
The characteristics of the retention and the mass transfer kinetics in reversed-phase liquid chromatography (RPLC) were measured on a system consisting of a C18-silica gel and a tetrahydrofuran-water (50:50, v/v) solution. These parameters were derived from the first and the second moments of the elution peaks, respectively. Further information on the thermodynamic properties of this system was derived from the temperature dependence of these moments. Some correlations previously established were confirmed for this system, namely, an enthalpy-entropy compensation for both retention and surface diffusion and a linear free-energy relationship. These results are compared with those observed in other similar systems using methanol-water (70:30, v/v) and acetonitnile-water (70:30, v/v) solutions. The contribution of surface diffusion to intraparticle diffusion in C18-silica gel particles was shown to be important. The analysis of the thermodynamic properties of surface diffusion suggests that, in these three RPLC systems, its activation energy is lower than the isosteric heat of adsorption. The nature and the extent of the influence of the mobile phase composition on the parameters describing the retention and the mass transfer kinetics are different but the chromatographic mechanisms involved in RPLC systems appear similar, irrespective of the nature of the organic modifier in the mobile phase.  相似文献   

4.
Three groups of structurally diverse chiral compounds were used to study the interaction mechanism responsible for stereoselective recognition with teicoplanin as chiral selector in capillary liquid chromatography. Teicoplanin-based chiral stationary phase (CSP) was used. The effect of the variation of mobile phase composition on retention and enantioselective separation was studied. The mobile phase composition suitable for enantioresolution of the various chiral compounds differed according to the interaction forces needed for chiral recognition. Mobile phases with high buffer portion (70-90 vol.%) were preferred for separation of enantiomers of profen non-steroidal anti-inflammatory drugs and chlorophenoxypropionic acid herbicides that require hydrophobic interactions, inclusion and pi-pi interactions for stereoselective recognition with teicoplanin. Higher concentration triethylamine in the buffer (0.5-1.0%) increased resolution of these acids. On the other hand, H-bonding and electrostatic interactions are important in stereoselective interaction mechanism of beta-adrenergic antagonists with teicoplanin. These interaction types predominate in the reversed phase separation mode with high organic modifier content (95% methanol) and in polar organic mobile phases. For this reason beta-adrenergic antagonists were best enantioresolved in the polar organic mode. The mobile phase composed of methanol/acetic acid/triethylamine, 100/0.01/0.01 (v/v/v), provided enantioresolution values of all the studied beta-adrenergic antagonists in the range 1.1-1.9. Addition of teicoplanin to the mobile phase, which was suitable for enantioseparation of certain compounds on the CSP, was also investigated. This system was used to dispose of nonstereoselective interactions of analytes with silica gel support that often participate in the interaction with CSPs. Very low concentration of teicoplanin in the mobile phase (0.1 mM) resulted in enantioselective separation of 2,2- and 2,4-chlorophenoxypropionic acids.  相似文献   

5.
The original plate model of chromatography is extended to the sorption process occurring at the column inlet and the desorption process at the column exit. At the column inlet it is shown that sufficiently wide feed bands undergo no change in concentration but a fall in band width, i.e., the volume of mobile phase occupied by the solute band is reduced. The reduction factor is (1 + k) where k is the mass distribution ratio (capacity factor). Narrower bands suffer partial reduction in both band width and concentration. On desorption at the outlet, however, the change is always in band width and not concentration. A perfect detector registers the true concentration-time profile of the band in the column if the solute mass fraction in the stationary phase is below 10?3 at the column outlet. The risks of stripping the stationary phase at high solute concentrations in analytical and preparative or production gas chromatography are compared.  相似文献   

6.
The parameters of the thermodynamics and mass transfer kinetics of the structural analogues (L-enantiomers) of the template were measured on an Fmoc-L-tryptophan (Fmoc-L-Trp) imprinted polymer, at different temperatures. The equilibrium isotherm data and the overloaded band profiles of these compounds were measured at temperatures of 298, 313, 323, and 333 K. The isotherm data were modeled. The thermodynamic functions of the different adsorption sites were derived from the isotherm parameters, using van't Hoff plots. The mass transfer parameters were derived by comparing the experimental peak profiles and profiles calculated using the lumped pore diffusion (POR) model for chromatography. These data show that (1) the strength between the substrate molecules and the MIP increases with increasing number of functional groups on the substrates; (2) enthalpy is the driving force for the affinity of the substrates for the MIP; (3) surface diffusion is the dominant mass transfer mechanism of the substrates through the porous MIP. For those substrate molecules that have the same stereochemistry as the template, the energetic surface heterogeneity needs to be incorporated into the surface diffusion coefficients. Heterogeneous surface diffusivities decrease with increasing affinity of the substrates for the MIP.  相似文献   

7.
The mass transfer kinetics of butyl benzoate, eluted on a monolithic RPLC column with methanol-water (65:35, v/v) as the mobile phase was investigated, using the perturbation method to acquire isotherm data and the mobile phase velocity dependence of the height equivalent to a theoretical plate of perturbation peaks to acquire kinetics data. The equilibrium isotherm of butyl benzoate is accounted for by the liquid-solid extended multilayer BET isotherm model. The total porosity of the column varies much with the butyl benzoate concentration, influencing strongly the parameters of its mass transfer kinetics and the profiles of the breakthrough curves. Using all these parameters, the general rate model of chromatography predicts band profiles and Van Deemter curves that are in excellent agreement with experimental results provided the influence of concentration on the porosity is properly taken into account. This agreement confirms the validity of the models selected for the isotherm and for the mass transfer kinetics.  相似文献   

8.
The possibility of forming ion-pairs between bile acids (sodium taurocholate, sodium taurodeoxycholate and sodium taurochenodeoxycholate) and different compounds (pralidoxime, obidoxime and pyridostigmine) having a cationic character has been studied in reversed-phase liquid chromatography (RP-LC). This study can be useful in understanding the role of bile acids in the transport of ionic species through hydrophobic membrane. The present study focused on the influence of mobile phase composition on the retention parameters of chosen compounds (percentage of acetonitrile, pH of aqueous component or ionic strength). For constant concentration of bile acids in aqueous component of mobile phase the functional dependencies between the logarithm of the retention factor (k) and the methanol content in the mobile phase followed a binomial pattern (U-shaped), with a minimum positioned within the interval 70-85% methanol.  相似文献   

9.
T. Takeuchi  T. Miwa 《Chromatographia》1996,43(3-4):143-148
Summary The retention behavior of dansyl amino acids in micellar liquid chromatography has been examined by using ionexchange-induced stationary phases. Several parameters affected the retention of the analytes, including the type and concentration of micellar agent and modifier ion and the concentration of acetonitrile in the mobile phase. The order of elution of dansyl amino acids obtained with the micellar mobile phase was very different from that observed in conventional reversed-phase liquid chromatography. Fluorescence intensities of some dansyl amino acids were enhanced by the micellar mobile phase.  相似文献   

10.
A variety of racemic compounds were resolved using reversed-phase thin-layer chromatography (TLC) with mobile phases containing highly concentration solutions of beta-cyclodextrin (beta-CD). These include the drugs labetalol and mephenytoin, metallocenes, crown ethers, methyl-p-toluenesulfinate, nornicotine derivaties and several dansyl and beta-naphthylamide substituted amino acids. It was possible to resolve some racemates that could not be separated on beta-CD bonded phase liquid chromatography (LC) columns with this technique. Likewise there were some compounds that could be resolved with the LC approach that failed to separate with the present TLC method. In cases of racemates that could be resolved by either approach, it was found that the retention order was exactly opposite for the two methods. Enantiomeric resolution is highly dependent on mobile phase composition. In particular, the type and amount of organic modifier as well as the concentration of beta-CD affect the observed resolution. Possible reasons for the chromatographic behavior are discussed. Several diastereoisomeric compounds were separated as well, including steroid epimers and pharmaceutical compounds.  相似文献   

11.
Regularities of the chromatographic retention and thermodynamics of the adsorption of enantiomers of α-phenylcarboxylic acids on a chiral stationary phase with immobilized macrocyclic antibiotic eremomycin under conditions of reversed-phase liquid chromatography with aqueous-ethanol mobile phases are studied. Relationships between the retention characteristics of the acids, the enantioselectivity of their separation, and the concentration of organic modifier in the mobile phase are found. It is shown that the sterical structure of substituents on the chiral atoms of the acids affect the mechanism of retention. The compensation effect in the studied systems is considered.  相似文献   

12.
The chiral separation of basic compounds by subcritical fluid chromatography (SFC) is often unsuccessful, due possibly to multiple interactions of the analyte with the mobile and stationary phase. Incorporation of a strong acid, ethanesulfonic acid (ESA), into the sample diluent and mobile phase modifier gives a dramatic improvement in these separations. Screening with ethanol containing 0.1% ESA on CHIRALPAK AD-H gave separation of 36 of 45 basic compounds previously not separated in SFC. The mechanism appears to involve the separation of an intact salt pair formed between the basic compound and ESA. Other modifiers, other acids and one additional stationary phase were examined and found to yield additional separations.  相似文献   

13.
A recent study of the mass transfer kinetics of (-)- or S-Tr?ger's base (TB) between ethanol and microcrystalline cellulose triacetate (CTA) allows an analysis of the concentration dependence of the mass transfer rate coefficient (k(m)). S-TB elutes before R-TB. The retention time of the both compounds decreases with increasing temperature. In this study, experimental data measured between 30 and 50 degrees C were analyzed to provide information on the kinetics of several mass transfer processes which take place in the chromatographic column, i.e., axial and intraparticle dispersion, the fluid-to-particle mass transfer, and the kinetics of adsorption/desorption at the actual adsorption sites. Intraparticle diffusion has the dominant contribution to band broadening at high flow-rates. Both intraparticle diffusivity and the surface diffusion coefficient exhibit a small concentration dependence. The positive dependence of k(m) on the concentration of S-TB seems to result from the properties of the adsorption/desorption kinetics and can be interpreted by considering the phase equilibrium properties. A quantitative analysis of the activation energy of the mass transfer kinetics of S-TB in the CTA column was also attempted.  相似文献   

14.
A rapid method has been developed for the simultaneous separation of the polar glycine- and taurine-conjugated bile acids by packed-column supercritical fluid chromatography. Samples were analysed on a cyanopropyl-bonded silica column with ultraviolet detection at 210 nm and carbon dioxide modified with methanol as the mobile phase. The influence of the stationary phase, modifier concentration, temperature, column pressure and modifier identity on retention was also studied. This new chromatographic method is applicable to the assay of conjugated bile acids in duodenal bile samples from patients with hepatobiliary diseases.  相似文献   

15.
High-performance liquid chromatography/mass spectrometry (HPLC/MS) analysis of anionic species such as sulphonic acid dyes and intermediates requires volatile ion-pairing mobile phase additives. Six di- and trialkylammonium acetates were compared with tetraalkylammonium salts and ammonium acetate in the concentration range 0-20 mmol l(-1) as mobile phase additives for HPLC/MS of polysulphonated compounds. The effects of the structure and concentration of the ion-pairing reagents on the electrospray response of mono-, di- and tetrasulphonic aromatic acids and acid dyes were studied in detail. Further, five different mass analysers and instrument geometries were compared. A higher signal decrease is observed with linear geometry instruments in comparison to orthogonal or even Z-spray geometry mass spectrometers. The concentration of mobile phase additives has a significant influence on the abundance ratios of multiply charged ions in the mass spectra of polysulphonated compounds. The competing ions of sulphonic acids may also cause significant signal suppression.  相似文献   

16.
An integrated chromatographic process comprising ion exchange (IEC) and hydrophobic interaction chromatography (HIC) for isolating a target protein form multicomponent mixtures has been analyzed. The model mixture contained immunoglobulin G that was the key product of the separation process, cytochrome C and ovalbumin. The adsorption characteristics and the mass transport kinetics of the model proteins have been determined along with their dependencies on the operating variables such as pH, temperature and the salt concentration for IEC as well as HIC media. Limitations of the process efficiency resulting from kinetic effects, solubility constraints and the necessity of the mobile phase exchange between chromatographic steps have been discussed. To improve the performance of the integrated process the multiple-injection technique has been suggested. This technique consisted in loading feed mixtures dissolved in a good solvent onto the column by several small-volume injections under conditions of strong protein adsorption. It allowed diminishing interactions between the sample-solvent and protein and elimination of undesired effects such as band splitting and band broadening. For the process design and optimization a dynamic model has been used accounting for thermodynamics and kinetics of the process. The optimization results indicated superiority of the multiple-injection technique over standard isocratic injections in terms of the process yield and productivity.  相似文献   

17.
The influence of microwave irradiation on the mass transfer kinetics of an insulin variant in reversed-phase liquid chromatography (RPLC) was investigated. The elution band profiles of insulin were obtained by the pulse-response method, under linear conditions. The RPLC column was placed in a microwave oven and the incremental change in the temperature of the column effluent stream at various microwave energies and mobile phase flow rates were measured. The microwave energy dissipated in the column was set at 15 and 30 W and the mobile phase flow rate was varied from 1.0 to 2.5 mL/min at a mobile phase composition of acetonitrile, water, and trifloroacetic acid (31:69:0.1, v/v/v). The experimental data were analyzed using the conventional method of moment analysis and the lumped pore diffusion model. Regardless of mobile flow rates, the effluent temperatures measured at 15 and 30 W microwave power input were 25+/-1 and 30+/-1 degrees C, respectively. The effect of microwave irradiation on the mass transfer of the variant insulin was determined by comparing the band profiles obtained under the same experimental conditions, at the same column temperature, with and without irradiation. The calculated intraparticle diffusion coefficient, D(e), at 30 W (30+/-1 degrees C) microwave irradiation was ca. 20% higher than without irradiation at 30+/-1 degrees C. These preliminary results suggest that microwave irradiation may have a significant influence on the intraparticle diffusion of insulin in RPLC.  相似文献   

18.
19.
Study of the mass transfer kinetics in a monolithic column   总被引:1,自引:0,他引:1  
The purpose of this work is to investigate the mass transfer kinetics of butylbenzoate on a monolithic RPLC column, with methanol-water (65:35, v/v) as the mobile phase. We used the perturbation method, measuring the height equivalent to a theoretical plate (HETP) of the peaks obtained as the response to small pulses of solute injected on a concentration plateau. The equilibrium isotherm of butylbenzoate was previously determined by frontal analysis. It is well accounted for by a liquid-solid extended multilayer BET isotherm model. The equilibrium data derived from the pulse method are in excellent agreement with those of frontal analysis in the accessible concentration range of 0 to 8 g/dm3. Plots of the HETP of small pulses. injected on eight different plateau concentrations, were acquired in a wide range of mobile phase flow velocities. The axial dispersion and the mass transfer kinetic coefficients were derived from these data. The validity of these measurements is discussed. The mass kinetics of butylbenzoate depends strongly on the plateau concentration. Processes involving adsorptive interactions between the solute and the stationary phase, e.g. surface diffusion and adsorption-desorption kinetics, combine in series to the external mass transfer kinetics and to effective pore diffusivity.  相似文献   

20.
The theory of nonlinear chromatography has been advanced by the incorporation of recent results obtained by the theory of partial differential equations. The system of equations of the ideal model has been solved analytically in the case of a single component for which the equilibrium isotherm between the mobile and the stationary phases is given by a Langmuir equation. A series of computer programs has been written which permits the calculation of numerical solutions of the semi-ideal model. The properties of the solutions obtained are described and discussed for a one-component system (profile of high concentration bands of a pure compound eluted by a pure solvent), several two-component systems (elution of a pure compound band by a binary mobile phase, separation of a binary mixture eluted by a pure mobile phase), and three-component systems (separation of a binary mixture eluted by a binary solvent, displacement and separation of a binary mixture). Experimental results are reported which validate the conclusions derived from the numerical integration of the model. The conclusions of the work apply to all high-performance chromatographic procedures, i.e., to those where the kinetics of mass transfer are fast enough for the mobile and stationary phases always to be near equilibrium. More specifically, the contribution from the kinetics of the retention mechanism to the mass transfer resistance must itself be negligible. This clearly excludes affinity chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号