首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
For the first time, the feasibility of a molecularly imprinted liquid phase deposition (LPD) thin film has been demonstrated. Thin films of titanium oxide imprinted with L-glutamic acid were prepared by the LPD method on a gold-coated quartz crystal microbalance. The imprinted molecule could be removed upon treatment with immersion in deionized water. A sensor was developed on the basis of this method and showed good sensitivity, selectivity, and reproducibility to the template molecule. An equation was deduced to characterize the interaction between molecularly imprinted films and the template by virtue of Scatchard analysis. X-ray photoelectron spectroscopy was introduced to show the evidence for the molecular imprinting phenomenon. The linear relationship between the frequency shifts and the concentration of analyte in the range of 10-200 microM was obtained. LPD proves to be a powerful method for imprinting titanium oxide thin films.  相似文献   

2.
The biomimetic synthesis of patterned mineral thin films, based on a combination of the microcontact printing technique and a novel crystallization process called the polymer-induced liquid-precursor (PILP) process, is demonstrated. The PILP process enables the deposition of smooth and continuous calcitic mineral films (up to 1500 nm in thickness) under low-temperature and aqueous-based processing conditions. The films are formed by deposition of colloidal droplets composed of a liquid-phase mineral precursor that is induced by a polymeric process-directing agent (polyaspartate or polyacrylate salts). The droplets can be preferentially deposited onto patterned substrates templated with self-assembled monolayers (SAMs) of alkanethiolate on gold. The droplets coalesce to form an amorphous mineral film, which then transforms (solidifies and crystallizes) while retaining the shape of the patterned template, providing a means for patterning the location and morphology of two-dimensional calcite crystals. A vertical substrate experiment supports the premise that the calcite films are created by adsorption of colloidal droplets from solution, rather than heterogeneous nucleation and growth of an amorphous phase on the SAMs. Large single-crystalline domains, on the order of 50-100 microm, can be "molded" into nonequilibrium morphologies by constraining the mineral precursor to a chemically defined "compartment". Biominerals are well recognized for their elaborate nonequilibrium molded crystal morphologies, and increasing evidence suggests that many biominerals are formed from an amorphous precursor that is stabilized by polyanionic proteins. The biomimetic system examined here, which consists of a polyanionic process-directing agent in combination with a functionalized organic template, offers a practical tool for generating complex inorganic structures such as those found in biominerals.  相似文献   

3.
As functional metal complexes, copper phthalocyanine (CuPc) and Cobalt (II) meso-tetraphenylporphyrin (CoTPP) were chosen to prepare metal complex/polymer hybrid thin films which were prepared by metal complex sublimation and reactive monomer evaporation onto the glass substrate in the bell jar reactor in vacuum conditions. The polarized transmission micrograph images show that the film deposited at 80 °C contains uniformly dispersed tiny grains and the film deposited at 30 °C is amorphous and homogeneous. As the deposition rate increases, the crystalline clusters were found and were dispersed uniformly. Those crystalline clusters are not to be developed by recrystallization process. Deposited metal complex/acrylate hybrid thin films were in situ photopolymerized. The kinetics of photopolymerization was investigated by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The thickness of the films was about 200 nm. The reactive monomer acts as a solvent to avoid the recrystallization of metal complexes and to have two-compositional continuous phase. The percent of metal complex can be adjusted up to 60% by controlling the metal complex sublimation rate. A good achievement in the uniformity and continuity of the film matrix has been made and the recrystallization of metal complex in the hybrid films has not been observed.  相似文献   

4.
Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data.  相似文献   

5.
Methylene blue (MB)/TiO2 hybrid thin films were prepared on glassy carbon (GC) electrode surface by the liquid phase deposition (LPD) process. The electrochemical measurements indicated that MB retained its electrochemical activity in the hybrid films. The linear dependence of the reduction peak current for MB upon the scan rate and linear relationship between the middle point potential of MB and pH revealed the surface-confined two-proton two-electron electrochemical characteristics of MB entrapped in hybrid LPD films. Although the electron transfer of K3[Fe(CN)6] on GC surface was inhibited by TiO2 film, the catalytic reduction of K3[Fe(CN)6] by MB was observed on the MB/TiO2 hybrid films. The electrocatalytic activity of hybrid films was also demonstrated as an “artificial peroxidase” for the catalytic reduction of H2O2.  相似文献   

6.
This review gives brief information of experimental conditions employed by different researchers for deposition of cadmium selenide (CdSe) thin films. For the films synthesized at room temperature, films should be annealed and etched to increase the solar cell efficiency. A photoelectrochemical study revealed that values of fill factor and efficiency of CdSe thin films deposited on fluorine-doped tin oxide-coated glass substrates exhibited maximum value compared to the film deposited on titanium and stainless steel substrates. This review will be helpful to researchers entering in field to understand basics about the electrodeposition of CdSe and its development towards next-generation photovoltaics.  相似文献   

7.
液相沉积法制备光催化活性TiO2薄膜和纳米粉体   总被引:7,自引:0,他引:7  
采用液相沉积法,在35℃通过向六氟钛酸铵水溶液中添加硼酸和结晶诱导剂锐 铁矿型TiO2纳米晶,沉积出具有光催化活性的Ti02薄膜和纳米粉体.用XRD,AFM, 阶梯仪,UV-vis,BET法对Ti02薄膜和粉体的沉积条件、结构、厚度和性能进行了测 定和表征,并用亚甲兰的降解,评价了TiO2薄膜和纳米粉体的光催化活性.结果表 明,当反应物六氟钛酸铵与硼酸的摩尔比为1:2—1:4时,沉积的粉体和薄膜含有 锐钛矿相Ti02;经300℃热处理的Ti02薄膜和纳米粉体具有最高的光催化活性,它 的光催化活性是未经热处理前的5倍.本文还解释了经300℃热处理的薄膜和纳米粉 体具有最高光催化活性的原因.  相似文献   

8.
The optical properties of spin-coated titanium dioxide films have been tuned by introducing mesoscale pores into the inorganic matrix. Differently sized pores were templated using Pluronic triblock copolymers as surfactants in the sol-gel precursor solutions and adjusted by varying the process parameters, such as the polymer concentration, annealing temperature, and time. The change in refractive index observed for different mesoporous anatase films annealed at 350, 400, or 450 °C directly correlates with changes in the pore size. Additionally, the index of refraction is influenced by the film thickness and the density of pores within the films. The band gap of these films is blue-shifted, presumably due to stress the introduction of pores exerts on the inorganic matrix. This study focused on elucidating the effect different templating materials (Pluronic F127 and P123) have on the pore size of the final mesoporous titania film and on understanding the relation of varying the polymer concentration (taking P123 as an example) in the sol-gel solution to the pore density and size in the resultant titania film. Titania thin film samples or corresponding titanium dioxide powders were characterized by X-ray diffraction, cross-section transmission electron microscopy, nitrogen adsorption, ellipsometery, UV/vis spectrometry, and other techniques to understand the interplay between mesoporosity and optical properties.  相似文献   

9.
A transparent boron-nitrogen thin film of thickness 550 nm was successfully deposited out of the discharge region by rf plasma CVD. The deposition was performed with diborane (4.8 vol % in N2) as the reactant gas and argon as the carrier gas by an inductively coupled reactor at a frequency of 13.56 MHz. The transparent films could be obtained at a low pressure of about 30 Pa, at a discharge power level of 30 W, and at room temperature without heating the substrate. The thin films obtained by rf plasma are compared with those obtained by microwave plasma. Both the refractive index and the deposition rate for the films deposited by microwave plasma are discussed according to the deposition conditions.  相似文献   

10.
Large homogeneous and adherent coatings of phenethylammonium bismuth iodide were produced using the cost-effective and scalable aerosol-assisted chemical vapor deposition (AACVD) methodology. The film morphology was found to depend on the deposition conditions and substrates, resulting in different optical properties to those reported from their spin-coated counterparts. Optoelectronic characterization revealed band bending effects occurring between the hybrid material and semiconducting substrates (TiO2 and FTO) due to heterojunction formation, and the optical bandgap of the hybrid material was calculated from UV-visible and PL spectrometry to be 2.05 eV. Maximum values for hydrophobicity and crystallographic preferential orientation were observed for films deposited on FTO/glass substrates, closely followed by values from films deposited on TiO2/glass substrates.  相似文献   

11.
By combining atomic layer deposition (ALD) and molecular layer deposition (MLD) thin-film techniques, the latter being a variant of the former in which organic precursors are used, it is possible to deposit thin films containing precisely controlled portions of inorganic and organic constituents. This in turn enables the adjustment of material properties by changing the number of ALD and MLD cycles applied during the deposition. In this work, the properties of such thin-film "alloys" prepared by varying the portions of Ti-4,4'-oxydianiline (Ti-ODA) inorganic-organic hybrid and TiO(2) in the structure were investigated. The films were deposited at 280 °C using TiCl(4) and water as precursors for TiO(2), and TiCl(4) and ODA for the Ti-ODA hybrid. The results demonstrate excellent tunability of the film properties such as degree of crystallinity, roughness, refractive index, and hardness depending on the relative number of TiO(2) and Ti-ODA cycles employed.  相似文献   

12.
The plasma enhanced chemical vapour deposition method applying atmospheric dielectric barrier discharge (ADBD) plasma was used for TiOx thin films deposition employing titanium (IV) isopropoxide and oxygen as reactants, and argon as a working gas. ADBD was operated in the filamentary mode. The films were deposited on glass. The films?? chemical composition, surface topography, wettability and aging were analysed, particularly the dependence between precursor and reactant concentration in the discharge atmosphere and its impact on TiOx films properties. Titanium in films near the surface area was oxidized, the dominating species being TiO2 and substoichiometric titanium oxides. The films exhibited contamination with carbon, as a result of atmospheric oxygen and carbon dioxide reactions with radicals in films. No relevant difference of the film surface due to oxygen concentration inside the reactor was determined. The films were hydrophilic immediately after deposition, afterwards their wettability diminished, due to chemical reactions of the film surface and chemical groups involved in the atmosphere.  相似文献   

13.
Luminescent properties of Y3(Al,Ga)5O12:Ce3+ phosphor powder and thin films were obtained. The phosphor powder was used as target material for Pulsed Laser Deposition (PLD) of the thin films in the presence of different background gases. Excitation peaks for the powder were obtained at 439, 349, 225 and 189 nm and emission peaks at 512 and 565 nm. X-ray diffraction indicated that better crystallization took place for films deposited in a 20 mTorr O2 atmosphere. Atomic force microscope revealed an RMS value of 0.7 nm, 2.5 nm and 4.8 nm for the films deposited in vacuum, O2 and Ar atmospheres, respectively. The highest PL intensity was observed for films deposited in the O2 atmosphere. A slight shift in the wavelength of the PL spectra was obtained for the thin films due to a change in the crystal field. The thickness of the films varied from 120 nm to 270 nm with films deposited in vacuum having the thin layer and those in Ar having the thick layer. The stoichiometry of the powder was maintained in the film during the deposition as confirmed by Rutherford backscattering spectroscopy.  相似文献   

14.
In hybrid solar cells a blocking layer between the transparent electrode and the mesoporous titanium dioxide is used to prevent short-circuits between the hole-conductor and the front electrode. The conventional approach is to use a compact film of titanium dioxide. This layer has to be of optimum thickness: it has to cover the rough surface of the anode material completely while keeping it as thin as possible since the layer acts as an ohmic resistance itself. A competitive alternative arises when using an amphiphilic diblock copolymer as a functional template to produce thin, hybrid films containing a conducting titanium dioxide network embedded in an insulating ceramic material. These hybrid films can be produced much thinner compared to the conventional approach and, hence, they possess a 32% higher conductivity. The conventional and the hybrid blocking layer are characterized by conductive scanning probe microscopy and macroscopic conductance measurements. Additionally, the functionality of both blocking layers in solid-state dye-sensitized solar cells, as tested with current-voltage measurements, is verified.  相似文献   

15.
Nano-structured SiO2 thin films were prepared on the surface of carbon steel for the first time by LPD. The compositions of the films were analyzed by XPS, and the surface morphology of the thin films were observed by AFM. The thin films were constituted by compact particles of SiO2, and there was no Fe in the films. In the process of film forming, the SiO2 colloid particles were deposited or absorbed directly onto the surface of carbon steel substrates that were activated by acid solution containing inhibitor, and corrosion of the substrates was avoided. The nano-structured SiO2 thin films that were prepared had excellent protective efficiency to the carbon.  相似文献   

16.
Titanium nitride films were produced on silicon substrate by ion beam assisted deposition in the alternate mode: first, thin titanium layers were deposited by electron beam evaporation and then titanium nitride was formed by nitrogen implantation at room temperature; this cycle was then iterated many times in order to obtain thicker titanium nitride layers. The obtained films were characterized with respect to atomic composition by Rutherford backscattering spectrometry and nuclear reaction analysis techniques, while chemical bonding was investigated by Auger line-shape analysis. We observe that nitrogen implantation, along with the production of titanium nitride, induces silicon migration into the film. Silicon transport is connected to point defects produced by ion implantation as well as by chemical driving forces associated with silicides formation.  相似文献   

17.
The characterization of plasma assisted pulsed laser deposition (PA-PLD) of titanium dioxide with biased substrate is discussed. Both the stage of plasma expansion and deposition have been studied. Optical emission spectroscopy was employed to estimate laser-induced plasma parameters, while different techniques [optical microscopy, scanning electron microscopy (SEM), spectrophotometry, X-ray photoelectron spectrometry (XPS)] were used to characterize the film properties. It is shown that PA-PLD prevents contamination of the deposited films by particles ejected during the interaction of the KrF excimer laser radiation with the titanium dioxide targets. Investigation made on the film deposited by conventional PLD and PA-PLD, has shown that the PA-PLD technique allows to improve the quality of the deposited films for what concerns their stoichiometry, morphology and deposition rate.  相似文献   

18.
Herein a convenient synthetic method to obtain 2,2,3,3‐tetrasilyltetrasilane 3 and 2,2,3,3,4,4‐hexasilylpentasilane 4 on a multigram scale is presented. Proton‐coupled 29Si NMR spectroscopy and single‐crystal X‐ray crystallography enabled unequivocal structural assignment. Owing to their unique properties, which are reflected in their nonpyrophoric character on contact with air and their enhanced light absorption above 250 nm, 3 and 4 are valuable precursors for liquid‐phase deposition (LPD) and the processing of thin silicon films. Amorphous silicon (a‐Si:H) films of excellent quality were deposited starting from 3 and characterized by conductivity measurements, ellipsometry, optical microscopy, and Raman spectroscopy.  相似文献   

19.
We present hybrid films consisting of a composite prepared from polystyrene (PS) and titanium dioxide (titania; TiO2) and molecularly imprinted with 1-pyrenebutyric acid (PBA). The interaction of PBA with the polymer is shown to occur via binding of the carboxylic group to TiO2 and hydrophobic interaction of the pyrene moiety with the PS network. We investigated the effects of the PS fraction on morphology, imprinting properties, and guest binding. The template could be completely removed by incubating the films in an acetonitrile solution of pyrene, which is due to the stronger π–π interaction between PBA and pyrene than the interaction between PBA and its binding site. A guest binding study with pyrene, 1-aminopyrene, pyrenemethanol, and anthracene-9-carboxylic acid showed that the hybrid films possessed selectivity and much higher binding capacity for PBA. This study demonstrates the first case of clear PS-assisted imprinting, where the π–π interaction of the template with a linear (non-crosslinked) polymer creates selective binding sites and enhances the binding capacity. This is a driving force for guest binding in addition to the interaction of the template/analyte with TiO2. All molecularly imprinted films displayed better binding, repeatability and reversibility compared to the respective non-imprinted films.
Figure
Illustration of the fabricated polystyrene/titania hybrids imprinted with 1-pyrenebutyric acid providing the interaction between the organic and inorganic components through the pyrene and carboxylic moieties  相似文献   

20.
本文利用激光刻蚀模板,在水溶液中电沉积制备金属铜薄膜,讨论了温度、电流、硫酸铜浓度对薄膜形貌的影响. 采用SEM对制备的铜薄膜进行表征,结果表明在沉积温度为30 ℃,沉积电流为4 A·dm-2(表观工作电流密度),硫酸铜浓度在20 ~ 50 g·L-1的水溶液中电沉积可以得到中空馒头状和开口碗状结构的铜薄膜. 利用激光刻蚀模板,在离子液体1-丁基-3-甲基咪唑三氟甲磺酸盐([BMI][TfO]) - 30 Vol%丙醇混合电解质中电沉积CIGS薄膜,研究了沉积电势、沉积时间对薄膜形貌的影响. SEM观察发现,在沉积电势为-1.8 V,沉积时间为1.5 h条件下电沉积可以得到近似柱状的簇状花束样的CIGS薄膜, 电沉积铜后再进一步电沉积CIGS,得到了均匀有序的鼓包柱状结构的Cu/CIGS复合薄膜. 用恒电势方波法对制备的薄膜真实表面积进行测试,计算结果表明,与无模板电沉积制备的CIGS薄膜相比,激光刻蚀模板法制备的Cu/CIGS复合薄膜的表面积提高了约8倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号