首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of substituted benzoyl radicals has been generated by laser flash photolysis of alpha-hydroxy ketones, alpha-amino ketones, and acyl and bis(acyl)phosphine oxides, all of which are used commercially as photoinitiators in free radical polymerizations. The benzoyl radicals have been studied by fast time-resolved infrared spectroscopy. The absolute rate constants for their reaction with n-butylacrylate, thiophenol, bromotrichloromethane and oxygen were measured in acetonitrile solution. The rate constants of benzoyl radical addition to n-butylacrylate range from 1.3 x 10(5) to 5.5 x 10(5) M(-1) s(-1) and are about 2 orders of magnitude lower than for the n-butylacrylate addition to the counterradicals that are produced by alpha-cleavage of the investigated ketones. Density functional theoretical calculations have been performed in order to rationalize the observed reactivities of the initiating radicals. Calculations of the phosphorus-centered radicals generated by photolysis of an acyl and bis(acyl)phosphine oxide suggest that P atom Mulliken spin populations are an indicator of the relative reactivities of the phosphorus-centered radicals. The alpha-cleavage of (2,4,6-trimethylbenzoyl)phosphine oxide was studied by picosecond pump-probe and nanosecond step-scan time-resolved infrared spectroscopy. The results support a mechanism in which the alpha-cleavage occurs from the triplet excited state that has a lifetime less than or equal to the singlet excited state.  相似文献   

2.
Abstract

Recent electron spin resonance (ESR) experiments on phosphorus-centered radicals generated by ionizing radiation demonstrate that stereochemical aspects act strongly on the rate of radical formation and can be decisive in the selection between the possible resulting radical structures. This phenomenon was first established in a single crystal ESR study on radiogenic electron-capture phosphorus-centered radicals of the racemic and meso stereoisomers of 1.2-dimethyl-1,2-diphenyldiphosphine disulfide (1). The radiation process of the racemic form involves the formation of a symmetric species with a threeelectron bond in an overall low yield. The meso isomer, on the other hand, yields exclusively asymmetric radical configurations in which the unpaired electmn resides on one of the two phosphorus nuclei. The high intensity of the ESR spectra for the meso compound indicate a more efficient electron-capture process. A similar pronounced difference in radiosensitivity was observed for the Rp (1 and Sp (2) isomers of (4S,5R)-2-chloro-3,4-dimethyl-5-phenyl-1,3,2-Oxazaphospholidine 2-sulfide. Upon X irradiation, 1 readily results in an electron-capture phosphorus centered radical, whereas the concurrent process in 2 is almost completely absent. Since the geometric parameters of the atoms directly linked to phosphorus are very much alike for 1 and 2 il can be concluded that the efficiency of electron-capture at phosphorus strongly depends on the relative configuration of the distant chiral centers at C4 and C5.  相似文献   

3.
The efficacy of organophosphorus radicals as anticoking agents was subjected to a computational study in which a representative set of radicals derived from industrially relevant organophosphorus additives was used to explore competitive reaction pathways on the graphene-like coke surface formed during thermal cracking. The aim was to investigate the nature of the competing reactions of different organophosphorus radicals on coke surfaces, and elucidate their mode of attack and inhibiting effect on the forming coke layer by use of contemporary computational methods. Density functional calculations on benzene and a larger polyaromatic hydrocarbon, namely, ovalene, showed that organophosphorus radicals have a high propensity to add to the periphery of the coke surface, inhibiting methyl radical induced hydrogen abstraction, which is known to be a key step in coke growth. Low addition barriers reported for a phosphatidyl radical suggest competitive aptitude against coke formation. Moreover, organophosphorus additives bearing aromatic substituents, which were shown to interact with the coke surface through dispersive π-π stacking interactions, are suggested to play a nontrivial role in hindering further stacking among coke surfaces. This may be the underlying rationale behind experimental observation of softer coke in the presence of organophosphorus radicals. The ultimate goal is to provide information that will be useful in building single-event microkinetic models. This study presents pertinent information on potential reactions that could be taken up in these models.  相似文献   

4.
The effect of substituents on the geometries, apicophilicities, radical stabilization energies, and bond dissociation energies of (*)P(CH(3))(3)X (X = CH(3), SCH(3), OCH(3), OH, CN, CF(3), Ph) were studied via high-level ab initio molecular orbital calculations. Two alternative definitions for the radical stabilization energy (RSE) were considered: the standard RSE, in which radical stability is measured relative to H-P(CH(3))(3)X, and a new definition, the alpha-RSE, which measures stability relative to P(CH(3))(2)X. We show that these alternative definitions yield almost diametrically opposed trends; we argue that alpha-RSE provides a reasonable qualitative measure of relative radical stability, while the standard RSE qualitatively reflects the relative strength of the P-H bonds in the corresponding H-P(CH(3))(3)X phosphines. The (*)P(CH(3))(3)X radicals assume a trigonal-bipyramidal structure, with the X-group occupying an axial position, and the unpaired electron distributed between a 3p(sigma)-type orbital (that occupies the position of the "fifth ligand"), and the sigma orbitals of the axial bonds. Consistent with this picture, the radical is stabilized by resonance (along the axial bonds) with configurations such as X(-) P(*+)(CH(3))(3) and X(*) P(CH(3))(3). As a result, substituents that are strong sigma-acceptors (such as F, OH, or OCH(3)) or have weak P-X bonds (such as SCH(3)) stabilize these configurations, resulting in the largest apicophilicities and alpha-RSEs. Unsaturated pi-acceptor substituents (such as phenyl or CN) are weakly stabilizing and interact with the 3p(sigma)-type orbital via a through-space effect. As part of this work, we challenge the notion that phosphorus-centered radicals are more stable than carbon-centered radicals.  相似文献   

5.
Efforts to develop synthetic methodologies allowing the preparation of alpha,alpha- difluorophosphonothioates, alpha,alpha-difluorophosphonodithioates, alpha,alpha-difluorophosphono- trithioates, and alpha,alpha-difluorophosphinates are reviewed in the light of applications in the field of modified oligonucleotides and cyclitol phosphates. Two successful approaches have been developed, based either on the addition of phosphorus-centered radicals onto gem-difluoroalkenes or on a process involving the addition of lithiodifluorophosphono- thioates 91 onto a ketone and the subsequent deoxygenation reaction of the adduct. The radical route successfully developed a practical route to alpha,alpha-difluoro-H-phosphinates which proved to be useful intermediates to a variety of phosphate isosters. The ionic route led to the first preparation of phosphonodifluoromethyl analogues of nucleoside- 3'-phosphates.  相似文献   

6.
7.
Inorganic radicals have so far led a shadowy existence in synthetic organic radical chemistry. This article briefly reviews the synthetic applications of the most important inorganic radicals. In addition, a new synthetic concept is presented, which should demonstrate that with inorganic, oxygen-centered radicals of the type X-O*, in which X is NO2, SO3-, and H, respectively, novel oxidative radical reactions could be performed, which in turn are difficult or impossible with their organic counterparts, the alkoxyl radicals R-O*.  相似文献   

8.
Single crystals of 1-[2,4,6-tri(tert-butyl)phenyl]-2-phenylphosphaethene ( PPPE ) and of 2D- and 13C-enriched PPPE were studied by ESR after X-ray irradiation. Two phosphorus-centered radicals were trapped in the crystals. The first one was characterized by its 31P, 1H-, and 13C-hyperfine tensors, the second one exhibited coupling with 31P only. Comparison of these parameters with those predicted by ab initio calculations on some phosphinyl species indicates that these two radicals probably result, on the one hand, from an addition of a H-atom to the C-atom of the P?C bond and, on the other, from a cyclization of the parent molecule. The proposed mechanisms are consistent with the mutual orientations of the hyperfine eigenvectors and bond directions in the undamaged molecule. A C-centered radical which results from an addition of a H-atom to the P-atom of the phosphaethylene bond is also detected.  相似文献   

9.
Abstract

Cationic radicals generated by anodic oxidation of organophosphorus(III) compounds are superelectrophilic radicals. This determines the pattern of their reactivity towards various substrates. The oxidation of (RO)2 PO? and (RO)2PS? gives corresponding radicals. Interaction of the mentioned radical species with ArH and olefines includes a common stage of radical adduct formation. It has been stated that the oxidation of the adduct into corresponding carbonium ion plays an important role in the following adduct conversions. This is particularly confirmed by the difference in the composition of products obtained in conditions of homogeneous (via photolysis or with stable radical cations) and heterogeneous (on the anode surface) generation of phosphorylating species.  相似文献   

10.
Organic peroxy radicals (often abbreviated RO(2)) play a central role in the chemistry of the Earth's lower atmosphere. Formed in the atmospheric oxidation of essentially every organic species emitted, their chemistry is part of the radical cycles that control the oxidative capacity of the atmosphere and lead to the formation of ozone, organic nitrates, organic acids, particulate matter and other so-called secondary pollutants. In this review, laboratory studies of this peroxy radical chemistry are detailed, as they pertain to the chemistry of the atmosphere. First, a brief discussion of methods used to detect the peroxy radicals in the laboratory is presented. Then, the basic reaction pathways - involving RO(2) unimolecular reactions and bimolecular reactions with atmospheric constituents such as NO, NO(2), NO(3), O(3), halogen oxides, HO(2), and other RO(2) species - are discussed. For each of these reaction pathways, basic reaction rates are presented, along with trends in reactivity with radical structure. Focus is placed on recent advances in detection methods and on recent advances in our understanding of radical cycling processes, particularly pertaining to the complex chemistry associated with the atmospheric oxidation of biogenic hydrocarbons.  相似文献   

11.
An increasing number of enzymes are being discovered that contain radicals or catalyze reactions via radical intermediates. These radical enzymes are able to open reaction pathways that two‐electron steps cannot achieve. Recently, organic chemists started to apply related radical chemistry for synthetic purposes, whereby an electron energized by light is recycled in every turnover. This Minireview compares this new type of reaction with enzymes that use recycling radicals and single electrons as cofactors.  相似文献   

12.
Radical–radical couplings are mostly nearly diffusion‐controlled processes. Therefore, the selective cross‐coupling of two different radicals is challenging and not a synthetically valuable transformation. However, if the radicals have different lifetimes and if they are generated at equal rates, cross‐coupling will become the dominant process. This high cross‐selectivity is based on a kinetic phenomenon called the persistent radical effect (PRE). In this Review, an explanation of the PRE supported by simulations of simple model systems is provided. Radical stabilities are discussed within the context of their lifetimes, and various examples of PRE‐mediated radical–radical couplings in synthesis are summarized. It is shown that the PRE is not restricted to the coupling of a persistent with a transient radical. If one coupling partner is longer‐lived than the other transient radical, the PRE operates and high cross‐selectivity is achieved. This important point expands the scope of PRE‐mediated radical chemistry. The Review is divided into two parts, namely 1) the coupling of persistent or longer‐lived organic radicals and 2) “radical–metal crossover reactions”; here, metal‐centered radical species and more generally longer‐lived transition‐metal complexes that are able to react with radicals are discussed—a field that has flourished recently.  相似文献   

13.
Our current unhealthy lifestyle and the exponential surge in the population getting affected by a variety of diseases have made pharmaceuticals or drugs an imperative part of life, making the development of innovative strategies for drug discovery or the introduction of refined, cost-effective and modern technologies for the synthesis of clinically used drugs, a need of the hour. Ever since their discovery, free radicals and radical cations or anions as reactive intermediates have captivated the chemists, resulting in an exceptional utilization of these moieties throughout the field of chemical synthesis, owing to their unprecedented and widespread reactivity. Sticking with the idea of not judging the book by its cover, despite the conventional thought process of radicals being unstable and difficult to control entities, scientists and academicians around the globe have done an appreciable amount of work utilizing both persistent as well as transient radicals for a variety of organic transformations, exemplifying them with the synthesis of significant biologically active pharmaceutical ingredients. This review truly accounts for the organic radical transformations including radical addition, radical cascade cyclization, radical/radical cross-coupling, coupling with metal-complexes and radical cations coupling with nucleophiles, that offers fascinating and unconventional approaches towards the construction of intricate structural frameworks of marketed APIs with high atom- and step-economy; complementing the otherwise employed traditional methods. This tutorial review presents a comprehensive package of diverse methods utilized for radical generation, featuring their reactivity to form critical bonds in pharmaceutical total synthesis or in building key starting materials or intermediates of their synthetic journey, acknowledging their excellence, downsides and underlying mechanisms, which are otherwise poorly highlighted in the literature. Despite great achievements over the past few decades in this area, many challenges and obstacles are yet to be unraveled to shorten the distance between the academics and the industry, which are all discussed in summary and outlook.  相似文献   

14.
The activation of C−Br bonds in various bromoalkanes by the biradical [⋅P(μ-NTer)2P⋅] ( 1 ) (Ter=2,6-bis-(2,4,6-trimethylphenyl)-phenyl) is reported, yielding trans-addition products of the type [Br−P(μ-NTer)2P−R] ( 2 ), so-called 1,3-substituted cyclo-1,3-diphospha-2,4-diazanes. This addition reaction, which represents a new easy approach to asymmetrically substituted cyclo-1,3-diphospha-2,4-diazanes, was investigated mechanistically by different spectroscopic methods (NMR, EPR, IR, Raman); the results suggested a stepwise radical reaction mechanism, as evidenced by the in-situ detection of the phosphorus-centered monoradical [⋅P(μ-NTer)2P-R].< To provide further evidence for the radical mechanism, [⋅P(μ-NTer)2P-Et] ( 3Et ⋅) was synthesized directly by reduction of the bromoethane addition product [Br-P(μ-NTer)2P-Et] ( 2 a ) with magnesium, resulting in the formation of the persistent phosphorus-centered monoradical [⋅P(μ-NTer)2P-Et], which could be isolated and fully characterized, including single-crystal X-ray diffraction. Comparison of the EPR spectrum of the radical intermediate in the addition reaction with that of the synthesized new [⋅P(μ-NTer)2P-Et] radical clearly proves the existence of radicals over the course of the reaction of biradical [⋅P(μ-NTer)2P⋅] ( 1 ) with bromoethane. Extensive DFT and coupled cluster calculations corroborate the experimental data for a radical mechanism in the reaction of biradical [⋅P(μ-NTer)2P⋅] with EtBr. In the field of hetero-cyclobutane-1,3-diyls, the demonstration of a stepwise radical reaction represents a new aspect and closes the gap between P-centered biradicals and P-centered monoradicals in terms of radical reactivity.  相似文献   

15.
《中国化学快报》2021,32(11):3331-3341
Triphenylamine (TPA) derivatives and their radical cation counterparts have successfully demonstrated a great potential for applications in a wide range of fields including organic redox catalysis, organic semiconductors, magnetic materials, etc., mainly because of their excellent redox activity. The stability of TPA radical cation has significant effect on the properties of the TPA-based functional materials, especially in relation to their electronic properties. Considering the instability of parent TPA radical cation, many efforts have been devoted to the development of stable TPA radical cations and related materials. Among them, TPA radical cation-based macrocycles have attracted particular attention because their large delocalized structures can stabilize the TPA radicals, thus endow them with outstanding redox behaviors, multiple resonance structures, and wide application in various optoelectronic devices. In this review, we give a brief introduction of organic radicals and the documented stable TPA radicals. Subsequently, a number of TPA radical cation-based macrocycles are comprehensively surveyed. It is expected that this minireview will not only summarize the recent development of TPA radical cations and their macrocycles, but also shed new light on the prospect of the design of more sophisticated radical cation-based architectures and related materials.  相似文献   

16.
It is found that electrochemically generated radical cations of organophosphorus compounds react with substrates that are capable of homolytic cleavage of the element-hydrogen bond via a radical detachment of the hydrogen atom, thus initiating the chain radical addition of the substrates over the double bond of alkenes. The presence of a strong base that is capable of deprotonating intermediate phosphonium salts in electrolyte allows one to set up an electrocatalytic cycle and use organophosphorus compounds in catalytic quantities. The main side reaction in the studied processes is the interaction between radical cations of organophosphorus compounds and olefin which leads to the formation of phosphorylated alkenes.  相似文献   

17.
A key component in light-induced radical polymerization is the photoinitiator which produces free radicals through a photochemical reaction. In the first part of this paper, a short analysis of the different steps that take place in the light-induced radical polymerization using bimolecular photoinitiating systems is made. In the second part, the obtained results in the polymerization of acrylic monomers using conjugated and nonconjugated aminobenzophenones as photoinitiators are shown. A summary of the photochemical behavior of these photoinitiators together with several aspects related to the polymerization kinetics are described. The nature and efficiency of the produced radicals are studied as well as the reactivity of the radicals generated from the substituted dimethylanilines-camphorquinone photoinitiation systems. Important mechanistic differences were found in the photochemical behavior and radical efficiency for the families of photoinitiators studied.  相似文献   

18.
19.
IntroductionSPin trapping technique has been widely used for the detection and identification of unstable radicals. As traps, nitrones and nitroso compounds are most widely usedll--4]. However,the identification of spin adducts by EPR spectroscopy is rather difficult because the variationof the hyperfine coupling constants(hfccs) of spin adducts caused by the structural changes oftrapped radicals is not very large. Recently, the ph osp horns- con t al m ng m t rox id e h a s att ra ctedmuch …  相似文献   

20.
Fluorinated organic compounds have attracted significant attention over the past few decades owing to their unique properties and versatility. An established method for the synthesis of fluorinated organic compounds involves radical perfluoroalkylation reactions towards double bonds. In this radical pathway, electrophilic perfluoroalkyl radicals exhibit excellent reactivity towards electron-rich olefins. Therefore, several splendid perfluoroalkylation reactions of electron-rich olefins have been reported. However, there are only a few examples of reaction involving electron-deficient olefins because of their poor electronic compatibility with perfluoroalkyl radicals. This review focuses on the reports that challenge this long-standing issue. Radical perfluoroalkylation/bifunctionalization reactions of electron-deficient olefins are described according to the radical generation methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号