首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pinostrobin (PI, 5‐hydroxy‐7‐methoxyflavanone) is a natural flavonoid known for its rich pharmacological activities. The objective of this study was to identify the human liver cytochrome P450 (CYP450) isoenzymes involved in the metabolism of PI. A single hydoxylated metabolite was obtained from PI after an incubation with pooled human liver microsomes (HLMs). The relative contributions of different CYP450s were evaluated using CYP450‐selective inhibitors in HLMs and recombinant human CYP450 enzymes, and the results revealed the major involvement of CYP1A2, CYP2C9 and CYP2E1 in PI metabolism. We also evaluated the ability of PI to inhibit and induce human cytochrome P450 enzymes in vitro . High‐performance liquid chromatography and liquid chromatography–tandem mass spectrometry analytical techniques were used to estimate the enzymatic activities of seven drug‐metabolizing CYP450 isozymes in vitro . In HLMs, PI did not inhibit CYP 1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 or CYP3A4 (IC50 > 100 μm ). In the induction studies, PI had minimal effects on CYP1A2, CYP2B6and CYP3A4 activity. Based on these results, PI would not be expected to cause clinically significant CYP450 inhibition or induction.  相似文献   

2.
Artocarpin isolated from an agricultural plant Artocarpus communis has shows anti‐inflammation and anticancer activities. In this study, we utilized recombinant human UDP‐glucuronosyltransferasesupersomes (UGTs) and human liver microsomes to explore its inhibitory effect on UGTs and cytochrome p450 enzymes (CYPs). Chemical inhibition studies and screening assays with recombinant human CYPs were used to identify if CYP isoform is involved in artocarpin metabolism. Artocarpin showed strong inhibition against UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B7, CYP2C8 and CYP3A4. In particular, artocarpin exhibited competitive inhibition against CYP3A4 and noncompetitive inhibition against UGT1A3 and UGT1A7. The half inhibition concentration values for CYP3A4, UGT1A3 and UGT1A7 were 4.67, 3.82 and 4.82 μm , and the inhibition kinetic parameters for them were 0.78, 2.67 and 3.14 μm , respectively. After artocarpin was incubated in human liver microsomes and determined by HPLC, we observed its main metabolites (M1 and M2). In addition, we proved that CYP2D6 played the key role in the biotransformation of artocarpin in human liver microsomes. The result of molecular docking further confirmed that artocarpin interacted with CYP2D6, CYP2C8 and CYP3A4 through hydrogen bonds. This study provided preliminary results for further research on artocarpin or artocarpin‐containing herbs.  相似文献   

3.
Cytochrome P450 2C9 (CYP2C9) is a membrane-anchored human microsomal protein involved in the drug metabolism in liver. CYP2C9 consists of an N-terminal transmembrane anchor and a catalytic cytoplasmic domain. While the structure of the catalytic domain is well-known from X-ray experiments, the complete structure and its incorporation into the membrane remains unsolved. We constructed an atomistic model of complete CYP2C9 in a dioleoylphosphatidylcholine membrane and evolved it by molecular dynamics simulations in explicit water on a 100+ ns time-scale. The model agrees well with known experimental data about membrane positioning of cytochromes P450. The entry to the substrate access channel is proposed to be facing the membrane interior while the exit of the product egress channel is situated above the interface pointing toward the water phase. The positions of openings of the substrate access and product egress channels correspond to free energy minima of CYP2C9 substrate ibuprofen and its metabolite in the membrane, respectively.  相似文献   

4.
A number of furanocoumarins isolated from grapefruit juice have been found to inhibit CYP3A4 activity in vitro. In this study, we have designed and synthesised a range of analogues based on bergamottin to investigate the relationship between chemical structure and inhibition of CYP3A4 activity. Studies were performed using human liver microsomes and human intestinal S9 fraction, with testosterone as the marker substrate. With the exception of the coumarin and phenolic furanocoumarin derivatives, which were inactive, the alkyloxy-furanocoumarin analogues were found to inhibit CYP3A4 activity in a dose dependent manner, with observed IC50 values ranging from 0.13 +/- 0.03 to 49.3 +/- 1.9 microM. The unsaturated furan derivatives were found to exhibit time-dependent inhibition, showing a 2-, 4- and 14-fold increase in potency for 6',7'-epoxybergamottin, 6',7'-dihydroxybergamottin and bergamottin, respectively after a preincubation period of ten minutes. Reduction of the furan moiety resulted in an 11-fold decrease in inhibitory potency, suggesting that this functional group is key to the interaction between these compounds and CYP3A4.  相似文献   

5.
6.
Baltes MR  Dubois JG  Hanocq M 《Talanta》2001,54(5):983-987
Classical inhibitors of human cytochrome P450 3A4 activity, such as ketoconazol and quercetin, are tested to prove the efficiency of a new metabolisation model using living entire cells. Grapefruit juice is a well-known potent inhibitor of cytochrome P450 3A4 activity. With regard to the clinical relevance of grapefruit juice-drug interactions, an investigation of other common juices is undertaken with this in vitro model. The CYP3A4 activity is measured by the formation of the 6beta-hydroxytestosterone, which is quantified by an isocratic high performance liquid chromatography. It is demonstrated for the first time that lemon juice significantly inhibits by 60+/-3% the CYP3A4-mediated oxidation. Grapefruit juice inhibits this activity by 82+/-4%. The mechanism of lemon juice inhibition is competitive, whereas it is mixed for grapefruit juice. These results suggest that our in vitro model combined with our analytical method is applicable for the investigation of the inhibition of CYP3A4 not only by chemical inhibitors but also by natural food products.  相似文献   

7.
This communication demonstrates direct electron delivery from electrodes to cyt P450 reductases in stable films ( approximately 100 nm thick) of genetically enriched CYP1A2 and CYP3A4 microsomes made by layer-by-layer assembly with polyions. Reversible voltammetry of films containing genetically enriched cyt P450 monooxygenase microsomes was shown to involve cyt P450 reductase by comparison with the pure rabbit reductase and by lack of characteristic reactions of iron heme enzymes, such as reaction of the FeII form with CO and catalytic electrochemical reduction of oxygen and hydrogen peroxide. The microsome films were activated electrochemically to catalyze styrene epoxidation, consistent with the pathway utilized in the human liver, although further work is required to establish this definitively.  相似文献   

8.
Cnidilin is an active natural furocoumarin ingredient originating from well‐known traditional Chinese medicine Radix Angelicae Dahuricae . In the present study, an efficient approach was developed for the screening and identification of cnidilin metabolites using ultra‐high‐performance liquid chromatography coupled to quadrupole time‐of‐flight mass spectrometry. In this approach, an on‐line data acquisition method multiple mass defect filter combined with dynamic background subtraction was developed to trace all probable metabolites. Based on this analytical strategy, a total of 24 metabolites of cnidilin were detected in human liver microsomal incubation samples and the metabolic pathways were proposed. The results indicated that oxidation was the main biotransformation route for cnidilin in human liver microsomes. In addition, the specific cytochrome P450 (CYP) enzymes involved in the metabolism of cnidilin were identified using chemical inhibition and CYP recombinant enzymes. The results showed that CYP1A2 and CYP3A4 might be the major enzymes involved in the metabolism of cnidilin in human liver microsomes. The relationship between cnidilin and the CYP450 enzymes could provide us a theoretical basis of the pharmacological mechanism.  相似文献   

9.
This study shows that regulating the electron flow to the heme of human cytochrome P450 CYP3A4, using artificial redox chains, can significantly enhance its coupling efficiency and catalytic activity at electrode surfaces. The human CYP3A4 was fused at the genetic level either to the reductase domain of CYP102A1 (BMR) to create the CYP3A4/BMR or to Desulfovibrio vulgaris flavodoxin (FLD) to create the CYP3A4/FLD. Direct electrochemistry of the CYP3A4, CYP3A4/BMR and CYP3A4/FLD on glassy carbon and gold electrodes showed that the BMR and FLD flavo-proteins reduced the electron transfer rate to the CYP3A4 heme. Electrocatalysis resulted in appreciably higher product formation with the immobilized CYP3A4/BMR and CYP3A4/FLD on both surfaces due to an increased coupling efficiency. Rotating disk electrode studies and quantification of hydrogen peroxide were consistent with the proposed mechanism of a longer lived iron-peroxy species in the immobilized CYP3A4/BMR and CYP3A4/FLD. The approaches in this study provide a better understanding of cytochrome P450 uncoupling at electrode surfaces and aids in the construction of improved cytochrome P450 biosensors and bioelectrocatalysts.  相似文献   

10.
11.
Li  Xiaobin  Tang  Minghai  Wang  Hairong  Ma  Liang  Ye  Haoyu  Wang  Chunyu  Yang  Qiunan  Wan  Li  Chen  Lijuan 《Chromatographia》2016,79(21):1479-1490

F18, N-hydroxy-4-(2-methoxy-5-(methyl (2-methylquinazolin-4-yl) amino) phenoxy) butanamide, is a novel selective HDAC6 inhibitor with good antitumor activity. In the early drug development, drug-metabolism studies are a crucial and indispensable part. In this study, we proposed to evaluate the in vitro primary metabolism of F18 in phase Ι in liver microsomes from human, rat, dog, monkey and mouse and investigate the metabolite profile both in vitro and in vivo using LC–MS/MS methods. F18 showed high metabolic stability in human, rat, dog, monkey and mouse liver microsomes over 120 min, with t 1/2 >8 h in human, rat, and dog, and t 1/2 <3.5 h in monkey, with almost no clearance in mouse. Human cytochrome P450 (P450) phenotyping showed that F18 was predominantly metabolized by CYP2C9, CYP2E1, CYP2D6 and CYP3A4. The investigation of the effect of F18 on CYP enzymes in HLM demonstrated that this compound did not significantly inhibit CYP 1A2 (IC50 >100 μM), was a moderate inhibitor of CYP3A4 (IC50 = 1.63 μM) and had negligible effects on CYP3A1/2 activity in rats. The results will be valuable in understanding drug–drug interactions (DDI) when F18 is co-administered with other drugs. The metabolites of F18 were investigated in rat plasma, urine, feces and different liver microsomes in NADPH samples, yielding at least 11 metabolites in these biological samples. The prominent metabolic pathways were de-methylation, de-amination, de-oxidation and O-glucuronidation. In summary, this work provides the first clues regarding F18 metabolism, providing important information for comprehensive understanding of F18 metabolites.

  相似文献   

12.
Ketamine, a phencyclidine derivative, is used for induction of anesthesia, as an anesthetic drug for short term surgical interventions and in subanesthetic doses for postoperative pain relief. Ketamine undergoes extensive hepatic first-pass metabolism. Enantioselective capillary electrophoresis with multiple isomer sulfated β-cyclodextrin as chiral selector was used to identify cytochrome P450 enzymes involved in hepatic ketamine and norketamine biotransformation in vitro. The N-demethylation of ketamine to norketamine and subsequently the biotransformation of norketamine to other metabolites were studied via analysis of alkaline extracts of in vitro incubations of racemic ketamine and racemic norketamine with nine recombinantly expressed human cytochrome P450 enzymes and human liver microsomes. Norketamine was formed by CYP3A4, CYP2C19, CYP2B6, CYP2A6, CYP2D6 and CYP2C9, whereas CYP2B6 and CYP2A6 were identified to be the only enzymes which enable the hydroxylation of norketamine. The latter two enzymes produced metabolic patterns similar to those found in incubations with human liver microsomes. The kinetic data of ketamine N-demethylation with CYP3A4 and CYP2B6 were best described with the Michaelis–Menten model and the Hill equation, respectively. This is the first study elucidating the individual enzymes responsible for hydroxylation of norketamine. The obtained data suggest that in vitro biotransformation of ketamine and norketamine is stereoselective.  相似文献   

13.
A generic method employing ultrafast liquid chromatography with tandem mass spectrometry (LC/MS/MS) was developed and employed for routine screening of drug candidates for inhibition of five major human cytochrome p450 (CYP) isozymes, CYP3A4, CYP2D6, CYP2C9, CYP2C19, and CYP1A2. The method utilized a monolithic silica rod column to allow fast flow rates to significantly reduce chromatographic run time. The major metabolites of six CYP-specific probe substrates for the five p450 isoforms were monitored and quantified to determine IC(50) values of five drug compounds against each p450 isozyme. Human liver microsomal incubation samples at each test compound concentration were combined and analyzed simultaneously by the LC/MS/MS method. Each pooled sample containing six substrates and an internal standard was separated and detected in only 24 seconds. The combination of ultrafast chromatography and sample pooling techniques has significantly increased sample throughput and shortened assay turnaround time, allowing a large number of compounds to be screened rapidly for potential p450 inhibitory activity, to aid in compound selection and optimization in drug discovery.  相似文献   

14.
KR-32570 (5-(2-methoxy-5-chlorophenyl)furan-2-ylcarbonyl)guanidine) is a new reversible Na+/H+ exchanger inhibitor for preventing ischemia-reperfusion injury. This study was performed to identify the metabolic pathway of KR-32570 in human liver microsomes. Human liver microsomal incubation of KR-32570 in the presence of NADPH and UDPGA resulted in the formation of six metabolites, M1-M6. M1 was identified as O-desmethyl-KR-32570, on the basis of liquid chromatography/tandem mass spectrometric (LC/MS/MS) analysis with the synthesized authentic standard. M2 and M3 were suggested to be hydroxy-KR-32570 and hydroxy-O-desmethyl-KR-32570, respectively. M1, M2, and M3 were further metabolized to their glucuronide conjugates, M4, M5, and M6, respectively. In addition, the specific P450 isoforms responsible for KR-32570 oxidation to two major metabolites, O-desmethyl-KR-32570 and hydroxy-KR-32570, were identified using a combination of correlation analysis, chemical inhibition in human liver microsomes and metabolism by expressed recombinant P450 isoforms. The inhibitory potency of KR-32570 on clinically major P450s was investigated in human liver microsomes. The results show that CYP3A4 contributes to the oxidation of KR-32570 to hydroxy-KR-32570, and CYP1A2 play the predominant role in O-demethylation of KR-32570. KR-32570 was found to inhibit moderately the metabolism of CYP2C8 substrates.  相似文献   

15.
Complementary and alternative medicines (CAM) can affect the pharmacokinetics of anticancer drugs by interacting with the metabolizing enzyme cytochrome P450 (CYP) 3A4. To evaluate changes in the activity of CYP3A4 in patients, levels of 1‐hydroxymidazolam in plasma are often determined with liquid chromatography–quadrupole mass spectrometry (LC‐MS/MS). However, validated LC‐MS/MS methods to determine in vitro CYP3A4 inhibition in human liver microsomes are scarce and not optimized for evaluating CYP3A4 inhibition by CAM. The latter is necessary because CAM are often complex mixtures of numerous compounds that can interfere with the selective measurement of 1‐hydroxymidazolam. Therefore, the aim was to validate and optimize an LC‐MS/MS method for the adequate determination of CYP3A4 inhibition by CAM in human liver microsomes. After incubation of human liver microsomes with midazolam, liquid–liquid extraction with tert‐butyl methyl ether was applied and dried samples were reconstituted in 50% methanol. These samples were injected onto a reversed‐phase chromatography consisting of a Zorbax Extend‐C18 column (2.1 × 150 mm, 5.0 µm particle size), connected to a triple quadrupole mass spectrometer with electrospray ionization. The described LC‐MS/MS method was validated over linear range of 1.0–500 nm for 1‐hydroxymidazolam. The results revealed good inter‐assay accuracy (≥85% and ≤115%) and within‐day and between‐day precisions (coefficient of variation ≤ 4.43%). Furthermore, the applicability of this assay for the determination of CYP3A4 inhibition in complex matrix mixtures was successfully demonstrated in an in vitro experiment in which CYP3A4 inhibition by known CAM (β‐carotene, green tea, milk thistle and St. John's wort) was determined. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The use of human cytochrome P450 (CYP) enzymes is increasing for the production of drug metabolites used for drug safety testing and doping analysis. Major challenges are high-priced cofactors, poor stability, and comparatively low activities. We have shown previously that production of specific metabolites in milligrams to gram scale is feasible using human CYPs recombinantly expressed in fission yeast. In this study, we sought to improve the activities of human CYP3A enzymes by genetic engineering. Two side chains (Pro293 and Arg409) of known activating human CYP3A polymorphic variants were??separately or together??introduced into the wild-type forms of each of the three enzymes CYP3A4, CYP3A5, and CYP3A7, respectively. Different effects of the two mutations and their combination on enzyme activity were monitored using both polar and nonpolar substrates. Interestingly, the CYP3A7 double mutant displayed a strong increase in activity with respect to testosterone 6??-hydroxylation (300?% of wild-type activity) and luciferin-6??-pentafluoro-benzyl ether turnover (400?% compared to wild type), while the single mutant CYP3A5Pro293 showed 370 and 400?% of wild-type activity towards 6??-hydroxylation of testosterone and 16??-hydroxylation of dehydroepiandrosterone, respectively. Overall, six out of seven newly created mutants displayed increased activity with at least one of the tested substrates. These results support the notion that pharmacogenetic knowledge can directly contribute to the improvement of biotechnological processes.  相似文献   

17.
利用超高效液相色谱-串联质谱联用(UPLC-MS/MS)的多反应监测(MRM)技术结合多探针底物方法, 研究了刺五加叶中的主要黄酮苷类化合物槲皮苷、金丝桃苷及芦丁对肝细胞色素P450酶(CYP450)亚型CYP1A2, CYP2C, CYP2E1, CYP2D和CYP3A活性的影响. 结果表明, 3种化合物对各CYP亚型酶均有抑制作用, 其中金丝桃苷和槲皮苷对CYP1A2催化的非那西丁的O-脱乙基反应抑制的IC50值分别为46.53和49.75 μmol/L, 金丝桃苷和芦丁对CYP2E1催化的氯唑沙宗的6-羟基化反应抑制的IC50值分别为99.87和86.36 μmol/L. 机理性抑制实验结果表明, 3种化合物对2种亚型酶的抑制作用是随着预孵时间延长而增强的机理性抑制.  相似文献   

18.
Cytochrome P‐450s (CYPs) are important biopolymers for the maintenance of cellular function. If metabolic activity of the CYP in the cells can be estimated, so can the function of metabolism, which is closer to the organism. In this research, the method of measuring the drug metabolic activity inside the cell by making use of an electrochemical technique was examined. Human hepatoma GS‐3A4‐HepG2 cells of which the cytochrome P‐4503A4 (CYP3A4) drug metabolic activity is found to be the same as that of primary hepatocytes were used in the experiment. The GS‐3A4‐HepG2 cells were cultured on an indium‐tin oxide (ITO) electrode until they became confluent. Substrate testosterone and inhibitor ketoconazole of CYP3A4 were exposed to cells cultured on an ITO electrode, and the reaction was observed by noting the electrochemical impedance measurement. Impedance was decomposed into the resistance component and the reactance component, and each was examined in detail. As a result, according to testosterone concentration change, there was a remarkable time change in the reactance component. A similar impedance measurement was done by using human hepatoma HepG2 cells in which the drug metabolic activity had extremely decreased. Nevertheless, no time change in the reactance component that was noticed in GS‐3A4‐HepG2 cells was observed. Next, the amount of metabolite in the solution after impedance measurement was measured by means of liquid chromatography‐tandem mass spectroscopy (LC‐MS/MS). In the experiment with GS‐3A4‐HepG2 cells, a testosterone concentration‐dependent correlation was observed between the reactance component change and the amount of metabolite. But, in the impedance measurement by ketoconazole, the change in reactance components was not observed in either the GS‐3A4‐HepG2 cells or the HepG2 cells. Ketoconazole and the heme iron in CYP3A4 effect the coordination bond, but ketoconazole was not metabolized by CYP3A4. It was confirmed that the time change in the reactance component which was caused by the testosterone was detected neither in the cells that take up the substrate, nor in the coordination bond between the CYP enzyme and the drug. Therefore, the time change in the remarkable reactance component observed by this electrochemical impedance measurement is dependent on drug metabolic activity. An electrochemical drug metabolic activity measuring method with the human hepatoma GS‐3A4‐HepG2 cells was able to be established. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
The in vitro metabolism of CJ-11,972, (2-benzhydryl-1-aza-bicyclo[2.2.2]oct-3-yl)-(5-tert-butyl-2-methoxybenzyl)amine, an NK1 receptor antagonist, was studied in human liver microsomes and recombinant human CYP isoforms. Liquid chromatography/mass spectrometry (LC/MS) and tandem mass spectrometry (LC/MS/MS) coupled to radioactive detection were used to detect and identify the metabolites. CJ-11,972 was extensively metabolized in human liver microsomes and recombinant human CYP 3A4/3A5 isoforms. A total of fourteen metabolites were identified by a combination of various MS techniques. The major metabolic pathways were due to oxidation of the tert-butyl moiety to form an alcohol (M6) and/or O-demethylation of the anisole moiety. The alcohol metabolite M6 was further oxidized to the corresponding aldehyde (M7) and carboxylic acid (M4). Two unusual metabolites (M13, M17), formed by C-demethylation of the tert-butyl group, were identified as 2-{3-[(2-benzhydryl-1-aza-bicyclo[2.2.2]oct-3-ylamino)methyl]-4-methoxyphenyl}propan-2-ol and (2-benzhydryl-1-aza-bicyclo[2.2.2]oct-3-yl)-(5-isopropenyl-2-methoxybenzyl)amine. A plausible mechanism for C-demethylation may involve oxidation of M6 to form an aldehyde metabolite (M7), followed by cytochrome P450-mediated deformylation leaving an unstable carbon-centered radical, which would quickly form either the alcohol metabolite M13 and the olefin metabolite M17.  相似文献   

20.
Recent studies have suggested that both constitutive androstane receptor (CAR) and pregnane X-receptor (PXR) are involved in the induction of rat liver microsomal cytochrome P-450 (CYP) 2B and 3A through a mechanism called cross-talk. In this study we intend to determine if a PXR-reporter gene assay could be used for the prediction of CYP3A and/or CYP2B induction in rats. The induction of rat CYP2B and CYP3A by nineteen structurally diverse compounds was evaluated by using rat precision-cut liver slices and a rat PXR reporter-gene system. Induction of CYP2B and CYP3A mRNAs in rat liver slices was quantified by real-time polymerase chain reaction. Rat PXR activation was measured by induction of luciferase activity in rat PXR reporter-gene system. Linear regression analysis of the fold of induction of mRNA in liver slices and the fold of luciferase activity in rat PXR reporter-gene system shows that a reasonable correlation (r2 = 0.6) exists between the CYP3A induction and the rat PXR activation. A much lower correlation was observed between CYP2B induction and the rat PXR activation (r2 = 0.1). The results from this study suggest that the PXR may play a major role in the induction of rat CYP3A, but not CYP2B. Therefore, the PXR-reporter gene assay may be useful in a high-throughput screening to predict CYP3A induction in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号