首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
2.
We have studied the topological and local aromaticity of BN-substituted benzene, pyrene, chrysene, triphenylene and tetracene molecules. The nucleus-independent chemical shielding (NICS), harmonic oscillator model of aromaticity (HOMA), para-delocalization index (PDI) and aromatic fluctuation index (FLU) have been calculated to quantify aromaticity in terms of magnetic and structural criteria. We find that charge separations due to the introduction of heteroatoms largely affect both the local and topological aromaticity of these molecules. Our studies show that the presence of any kind of heteroatom in the ring not only reduces the local delocalization in the six membered ring, but also affects strongly the topological aromaticity. In fact, the relative orders of the topological and local aromaticity depend strongly on the position of the heteroatoms in the structure. In general, more ring shared BN containing molecules are less aromatic than the less ring shared BN molecules. In addition our results provide evidence that the structural stability of the molecule is dominated by the σ bond rather than the π bond.  相似文献   

3.
In this work, we have analyzed the local aromaticity of the six-membered rings (6-MRs) of planar and pyramidalized pyracylene species through the structurally based harmonic oscillator model of aromaticity (HOMA), the electronically based para-delocalization index (PDI), and the magnetic-based nucleus independent chemical shift (NICS) measurements, as well as with maps of ring current density. According to ring currents and PDI and HOMA indicators of aromaticity, there is a small reduction of local aromaticity in the 6-MRs of pyracylene with a bending of the molecule. In the case of NICS, the results depend on whether the NICS value is calculated at the center of the ring (NICS(0)) or at 1 A above (NICS(1)(out)) or below (NICS(1)(in)) the ring plane. While NICS(1)(out) values also indicate a slight decrease of aromaticity with bending, NICS(0) and NICS(1)(in) wrongly point out a large increase of aromaticity upon distortion. We have demonstrated that the NICS(0) reduction in the 6-MRs of pyracylene upon bending is due to (a) a strong reduction of the paratropic currents in 5-MRs and (b) the fact that, due to the distortion, the paratropic currents point their effects in other directions.  相似文献   

4.
5.
The size-expanded DNA bases, xA, xC, xG, and xT, are benzo-homologue forms of the natural DNA bases; i.e., their structure can be seen as the fusion of a natural base and a benzene ring. Recently, a variety of DNAs, known as xDNAs, have been synthesized in which size-expanded and natural bases are paired. In this paper we use second-order M?ller-Plesset perturbation theory and density functional theory to investigate the structural and electronic properties of xA, xC, xG, and xT and their natural counterparts. We find that whereas natural and size-expanded bases have both nonplanar amino groups the latter have also nonplanar aromatic rings. When density functional theory is used to investigate the electronic properties of size-expanded and natural bases, it is found that the HOMO-LUMO gap of the size-expanded bases is smaller than that of the natural bases. Also, xG should be easier to oxidize than G.  相似文献   

6.
The H-bonded complexes formed from interaction between 5-fluorouracil (FU) and DNA pyrimidine bases have been investigated by B3LYP method using 6-311++G** basis set in the gas phase and the water solution. Vibrational frequencies and physical properties such as dipole moment, chemical potential, and chemical hardness of these compounds have been systematically explored. The natural bond orbital analysis and the Bader’s quantum theory of atoms in molecules are also used to elucidate the interaction characteristics of the investigated complexes. The aromaticity is measured using several well-established indices of aromaticity such as NICS, HOMA, PDI, ATI, and FLU. The MEP is given the visual representation of the chemically active sites and comparative reactivity of atoms. Furthermore, the effects of interactions on NMR data have been used for further investigation of the studied compounds.  相似文献   

7.
8.
Structures of selected polycyclic conjugated hydrocarbons with –B=B– and –BH–BH– moieties inserted in different places were calculated at the B3LYP/6-311++G** level and their aromatic properties evaluated. HOMA, NICS(0), NICS(1)zz, Λ and PDI indices were used for studying their aromatic properties. Both optimized planar (as in parent hydrocarbons) and non-planar structures were taken into account. It is shown that insertion of both types of boron groups disturbs and decreases the aromaticity of the corresponding hydrocarbons. The decreasing effect of the –BH–BH– group is much stronger. What is quite intriguing is that it appears that non-planar structures of the studied compounds have a little higher aromaticity than the strictly planar ones. Mutual correlations between results obtained by different aromaticity indices are calculated and thoroughly discussed.  相似文献   

9.
In this work, the aromatic fluctuation index (FLU) that describes the fluctuation of electronic charge between adjacent atoms in a given ring is introduced as a new aromaticity measure. This new electronic criterion of aromaticity is based on the fact that aromaticity is related to the cyclic delocalized circulation of pi electrons. It is defined not only considering the amount of electron sharing between contiguous atoms, which should be substantial in aromatic molecules, but also taking into account the similarity of electron sharing between adjacent atoms. For a series of rings in 15 planar polycyclic aromatic hydrocarbons, we have found that, in general, FLU is strongly correlated with other widely used indicators of local aromaticity, such as the harmonic-oscillator model of aromaticity, the nucleus independent chemical shift, and the para-delocalization index (PDI). In contrast to PDI, the FLU index can be applied to study the aromaticity of rings with any number of members and it can be used to analyze both the local and global aromatic character of rings and molecules.  相似文献   

10.
In this work we quantify the local aromaticity of six-membered rings in a series of planar and bowl-shaped polycyclic aromatic hydrocarbons (PAHs) and fullerenes. The evaluation of local aromaticity has been carried out through the use of structurally (HOMA) and magnetically (NICS) based measures, as well as by the use of a new electronically based indicator of aromaticity, the para delocalization index (PDI), which is defined as the average of all the Bader delocalization indices between para-related carbon atoms in six-membered rings. The series of PAHs selected includes C(10)H(8), C(12)H(8), C(14)H(8), C(20)H(10), C(26)H(12), and C(30)H(12), with benzene and C(60) taken as references. The change in the local aromaticity of the six-membered rings on going from benzene to C(60) is analyzed. Finally, we also compare the aromaticity of C(60) with that of C(70), open [5,6]- and closed [6,6]-C(60)NH systems, and C(60)F(18).  相似文献   

11.
Stability measures, such as the total energy and the HOMO-LUMO gap, calculated at the Hartree-Fock and DFT levels of theory, and the aromatic character of five circulenes/flowers with a hexagonal core and petals consisting of 5-, 6- and 7-membered rings are investigated. Geometric (HOMA) and magnetic (NICS) criteria are used to estimate the local aromatic character of every ring of the investigated circulenes. The local aromaticity of the coronene and sumanene patches in two tetrahedrally spanned fullerenes were calculated and compared with the HOMA and NICS values of the corresponding isolated circulenes.   相似文献   

12.
Cation–π complexes between several cations (Li+, Na+, K+, Be2+, Mg2+, and Ca2+) and different π-systems such as para-substituted (F, Cl, OH, SH, CH3, and NH2) benzene derivatives have been investigated by UB3LYP method using 6-311++G** basis set in the gas phase and the water solution. The ions have shown cation–π interaction with the aromatic motifs. Vibrational frequencies and physical properties such as dipole moment, chemical potential, and chemical hardness of these compounds have been systematically explored. The natural bond orbital analysis and the Bader’s quantum theory of atoms in molecules are also used to elucidate the interaction characteristics of the investigated complexes. The aromaticity is measured using several well-established indices of aromaticity such as NICS, HOMA, PDI, FLU, and FLUπ. The MEP is given the visual representation of the chemically active sites and comparative reactivity of atoms. Furthermore, the effects of interactions on NMR data have been used to more investigation of the studied compounds.  相似文献   

13.
This work introduces a new local aromaticity measure, defined as the mean of Bader's electron delocalization index (DI) of para-related carbon atoms in six-membered rings. This new electronic criterion of aromaticity is based on the fact that aromaticity is related to the cyclic delocalized distribution of pi-electrons. We have found that this DI and the harmonic oscillator model of aromaticity (HOMA) index are strongly correlated for a series of six-membered rings in eleven planar polycyclic aromatic hydrocarbons. The correlation between the DI and the nucleus-independent chemical shift (NICS) values is less remarkable, although in general six-membered rings with larger DI values also have more negative NICS indices. We have shown that this index can also be applied, with some modifications, to study of the aromaticity in five-membered rings.  相似文献   

14.
文献中已有越来越多的芳香性体系被发现,同时也有越来越多的芳香性指标被提出来,但是如何解释芳香化合物稳定性的起源以及理解芳香性的本质仍然是当今理论化学中一个悬而未决的难题。运用我们新近提出的密度泛函活性理论信息论方法,不久前我们曾对一系列富烯衍生物进行了系统研究并得到了一个全新的认识。本文进一步探讨苯并富烯衍生物的芳香性行为,目的在于考察一个或多个苯环与富烯连接之后其芳香性发生变化的情况。运用香农熵,费舍尔信息,Ghosh-Berkowitz-Parr熵,Onicescu信息能,信息增益,以及相对Rényi熵六个信息量,和四种芳香指标,ASE,HOMA,FLU和NICS,我们系统地研究了信息量和芳香性指标在单、双、三苯并富烯衍生物中的相关性。我们发现,不管是否有苯环与富烯相连,芳香指标和信息量的交叉相关性都是一样的。这表明,虽然苯环本身具有芳香性,但苯环与富烯相连并不能改变富烯的芳香性与反芳香性本质。苯并富烯衍生物与富烯衍生物的芳香性和反芳香性一致。苯并富烯衍生物的芳香性和反芳香性完全取决于富烯本身的芳香性和反芳香性。这些结果为认识和理解复杂体系芳香性和反芳香性起源和本质将提供有益的启示。  相似文献   

15.
《Tetrahedron》2019,75(35):130474
Electron structures of the fused rings in 7H and 9H tautomers of purine and adenine follow the 4N + 2 rule; the values of pEDA, HOMA, NICS and FLU indices document their aromatic character. In the 1H and 3H tautomers, these rings contain five or seven π electrons, hence they do not follow this rule and consequently exhibit lower aromaticity. This also applies to the aromaticity of whole molecules.  相似文献   

16.
The aromaticity and local-aromaticity of a large set of polycyclic aromatic hydrocarbons (PAHs) is studied using multicenter delocalization indices from generalized population analysis and the popular nucleus independent chemical shift (NICS) index. A method for the fast computation of the NICS values is introduced, using the so-called pseudo-pi-method. A detailed examination is made of the multidimensional nature of aromaticity. The lack of a good correlation between the NICS and the multicenter delocalization indices is reported and the grounds discussed. It is shown through a thorough statistical analysis that the NICS values arise not only from local aromaticity of the benzenoid rings, but also from other circuits. It is shown that the NICS indices do not reveal the individual aromatic nature of a specific ring, contrary to the delocalization indices.  相似文献   

17.
The AIM parameters at the ring critical point (the electron density and its Laplacian, the total electron energy density and both its components, potential and kinetic electron energy densities), have been intercorrelated with aromaticity indices: the geometry-based HOMA and the magnetism-based NICS, NICS(1), and NICS(1)(zz). A set of 33 phenylic rings having possibly a diversified aromatic character, and a set of 20 quasi-rings formed by intramolecular hydrogen and lithium bonds, have been taken into consideration. It has been found that the density of total electron energy, H, may serve as a new quantitative characteristic of pi-electron delocalization. The dependences between H values and aromaticity indices are correlated (cc(H/HOMA)=0.99, cc(H/NICS(1)zz)=0.95).  相似文献   

18.
We have theoretically designed five different m-phenylene coupled high-spin bis-heteroverdazyl diradicals and their analogous p-phenylene coupled low-spin positional isomers. The geometry-based aromaticity index, harmonic oscillator model of aromaticity (HOMA) values for both the couplers (local HOMA), and the whole diradicals (global HOMA) have been calculated for all the diradicals. We also qualitatively relate these HOMA values with the intramolecular magnetic exchange coupling constants (J), calculated using a broken symmetry approach within unrestricted density functional theory framework. Structural aromaticity index HOMA of linkage specific benzene rings in our designed diradical systems shows that the aromatic character depends on the planarity of the molecule and it controls the sign and magnitude of J. The predicted J values are explained on the basis of spin polarization maps, average dihedral angles, and magnetic orbitals. The effect of the spin leakage phenomenon on magnetic exchange coupling constant and that on HOMA values of certain phosphaverdazyl systems has been explicitly discussed. In addition, a similar comparison is made between the calculated exchange coupling constants and corresponding HOMA values. The main novelty of this work stands on the consideration of the aromatic behavior by means of the geometrical index HOMA. We also estimate another aromaticity index, nucleus independent chemical shift (NICS) values for the phenylene coupler in each diradical to measure aromaticity and compare its value with that of HOMA. The ground state stabilities of these diradicals have also been compared.  相似文献   

19.
20.
The aromaticity of the ring in variously substituted aniline/anilinium/anilide derivatives in their H-bonded complexes with various Broensted acids and bases was a subject of an analysis based on 332 experimental geometries retrieved from the Cambridge Structural Database and geometries optimized at the B3LYP/6-311+G** and MP2/aug-cc-pVDZ levels of theory. Ab initio modeling was applied to the para-substituted aniline, anilinium cation, and anilide anion derivatives (X = NO, NO2, CN, CHO, H, CH3, OCH3, and OH) and their H-bonded complexes (only for X = NO, NO2, CHO, H, and OH) with B (B = F- and CN-) or HB (HB = HF and HCN). In both cases, the harmonic oscillator model of aromaticity index (HOMA) was used, whereas for computational geometries, additionally, the magnetism-based indices NICS, NICS(1), and NICS(1)zz were also applied (NICS = nucleus-independent chemical shift). There is an equivalent prediction of aromaticity by NICSs and HOMA and approximate monotonic dependences of HOMA and NICS on the C-N bond length. The strongest changes in aromaticity estimated by HOMA and NICSs were found for aniline derivatives with NH2...B and anilide derivatives without and with NH-...HB interactions. The changes observed for two other kinds of interactions, NH2...HB and NH3+...base (for anilinium cations), are much smaller. For all four kinds of interactions, the relationships between ipso-bond angle, mean ipso-ortho bond length, and C-N bond length follow the Bent-Walsh rule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号