首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid composites ZnO/PANI were facily synthesized by a sonication process at room temperature. This procedure is non-expensive, time/energy saving and environmentally safe. The as-prepared ZnO/PANI were characterized by FTIR, UV-vis spectroscopies and SEM in order to investigate the structure and morphology of the studied composites. The samples were used to modify carbon paste electrode (CPE) in order to develop electrochemical biosensors (ZnO/PANI/CPE). The sensing properties of the nanoparticles were evaluated for dopamine, ascorbic acid and uric acid non-enzymatic detection. The effect of percentage of polyaniline in the composites and the effect of calcination on the biosensor's response were also examined in the present study. It was revealed that the existence of PANI in ZnO/PANI/CPE largely enhanced the electroactive surface area and therefore the sensitivity for electrochemical sensing. A good electrochemical behavior was noted for ZnO/40 wt% PANI-cal/CPE modified electrode toward DA, AA and UA oxidation. The electroactive surface area of the previously mentioned modified electrode (0.235 cm2) was two times higher than that of the bare electrode (0.117 cm2). The liner relationships between current intensities and concentrations were found to be 0.01–1.4 mM, 0.1–1.3 mM and 0.01–0.12 mM, with detection limit of 0.029 mM, 0.063 mM and 0.007 mM, for DA, AA and UA respectively. In the mixtures of ascorbic acid (AA), dopamine (DA) uric acid (UA) and glucose (Glu) the sensor showed high selectivity of DA with low interference of ascorbic acid by a current change of 14 %. The as-prepared ZnO/PANI/CPE biosensor displayed a good reproducibility and stability.  相似文献   

2.
The polyaniline/zinc oxide (PANI/ZnO) nanocomposites were prepared by in situ polymerization of aniline monomer with ZnO nanomaterials and applied as a photocatalyst for the degradation of methylene blue (MB) dye. The morphological observations elicited the agglomerations of PANI sheets which occurred due to the interaction between PANI and ZnO nanomaterials in PANI/ZnO nanocomposites. As compared to pristine PANI, the UV–vis spectra exhibited that the absorption peak of ππ* transitions considerably shifted to higher wavelength at 360 nm from 325 nm in the nanocomposites. The photocatalytic activity results indicated the substantial degradation of MB dye by ~76% over the surface of PANI/ZnO nanocomposite catalyst under light illumination. The PANI/ZnO nanocomposites showed three times higher photocatalytic activity to MB dye degradation compared to pristine PANI might due to high photogenerated electron (ē)–hole (h+) pairs charge separation.  相似文献   

3.
Polyaniline (PANI)/zinc oxide (ZnO) nanocomposite was synthesized by in-situ polymerization. X-ray diffraction patterns, UV?Cvisible spectroscopy, SEM, and TEM were used to characterize the composition and structure of the nanocomposite. Nanostructured PANI/ZnO composite was used as photocatalyst in the photodegradation of methylene blue dye molecules in aqueous solution. The photocatalytic activity of PANI/ZnO nanocomposite under UV and visible light irradiation was evaluated and was compared with that of ZnO nanoparticles. ZnO/PANI core?Cshell nanocomposite had greater photocatalytic activity than ZnO nanoparticles and pristine PANI under visible light irradiation. According to these results, application of PANI as a shell on the surface of ZnO nanoparticles causes the enhanced photocatalytic activity of the PANI/ZnO nanocomposite. Also UV?Cvisible spectroscopy studies showed that the absorption peak for PANI/ZnO nanocomposite has a red shift toward visible wavelengths compared with the ZnO nanoparticles and pristine PANI. The effect of different operating conditions on the photocatalytic performance of PANI/ZnO nanocomposite in the photodegradation of methylene blue dye molecules was investigated in a bath experimental setup.  相似文献   

4.
A nanofibrous polyaniline (PANI) thin film was fabricated using plasma‐induced polymerization method and explored its application in the fabrication of NO2 gas sensor. The effects of substrate position, pressure, and the number of plasma pulses on the PANI film growth rate were monitored and an optimum condition for the PANI thin film preparation was established. The resulting PANI film was characterized with UV–visible spectrophotometer, FTIR, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The PANI thin film possessed nanofibers with a diameter ranging from 15 to 20 nm. The NO2 gas sensing behavior was studied by measuring the change in electrical conductivity of PANI film with respect to NO2 gas concentration and exposure time. The optimized sensor exhibited a sensitivity factor of 206 with a response time of 23 sec. The NO2 gas sensor using nanofibrous PANI thin film as sensing probe showed a linear current response to the NO2 gas concentration in the range of 10–100 ppm. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
以二水氯化亚锡(SnCl2·2H2O)为盐原料,采用静电纺丝的方法制备了SnO2纳米纤维.为了研究ZnO掺杂对SnO2形貌、结构及化学成分的影响,分别制备了不同含量ZnO掺杂的SnO2/ZnO复合材料.利用热重-差热分析(TG-DTA)、X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱仪、扫描电镜(SEM)及能量色散X射线(EDX)光谱对材料的结晶学特性及微结构进行了表征.制备的SnO2/ZnO复合材料是由纳米量级的小颗粒构成的分级结构材料.ZnO含量不同,对应的SnO2/ZnO复合材料结构不同.表征结果表明ZnO的掺杂量对SnO2材料的形貌及结构均起着重要作用.将制备的不同ZnO含量的SnO2/ZnO复合材料进行气敏测试,测试结果表明,Sn:Zn摩尔比为1:1制作的气敏元件对甲醇的灵敏度优于其它摩尔比的气敏元件.讨论了SnO2/ZnO复合材料气敏元件的敏感机理.同时针对Sn:Zn摩尔比为1:1时表现出最好的气敏响应,分析了其原因,包括Zn的替位式掺杂行为、ZnO的催化作用、过量ZnO对SnO2生长的抑制作用以及SnO2与ZnO晶粒界面处的异质结.  相似文献   

6.
《印度化学会志》2021,98(11):100187
The present research deals with the synthesis of zinc oxide (ZnO) nanoparticles by the co-precipitation (CPT) method. The CPT method was successfully utilized for the synthesis of ZnO nanoparticles. The structural properties of undoped ZnO and cobalt doped ZnO were confirmed by employing an X-ray diffraction (XRD) study, from which the average particle size for each prepared material was calculated from the Debye Scherer formula. The average particle size confirms the nano range fabrication of undoped and cobalt doped ZnO material. The surface characteristics, morphology, texture, and porosity properties of undoped ZnO and cobalt doped ZnO were investigated from scanning electron microscopy (SEM). The elemental composition was investigated from energy dispersive spectroscopy (EDS). The High-resolution transmission electron microscopy (HRTEM) results revealed the hexagonal phase of prepared material. Furthermore, the undoped ZnO and 5% cobalt doped ZnO gas sensors prepared by screen printing technology were utilized for gas sensing purposes for testing the gases like H2S, NO2, SO2, and methanol. For the gases examined, the cobalt modified ZnO sensor proved to be quite effective, especially for H2S and NO2 gas vapors. The Co2+ doped ZnO sensor showed 70.12% sensitivity for H2S gas at 150 0C and 68.75% gas response for NO2 gas vapors at 120 0C. In addition, the cobalt modified sensor was also investigated for reusability test to get concrete gas response results with the time interval of 15 days. In conclusion, it can be mentioned that the cobalt doped ZnO thick film sensor is a promising sensor for H2S and NO2 gas vapors.  相似文献   

7.
Controllable synthesis of novel sandwiched polyaniline (PANI)/ZnO/PANI free‐standing nanocomposite films is reported via spin coating of ZnO quantum‐dot interlayer on PANI base layer and then PANI surface layer on the ZnO interlayer. The thickness of the ZnO interlayer and the PANI surface layer can be easily controlled by adjusting spin time and spin speed, respectively. The effects of the ZnO interlayer thickness and the PANI surface layer thickness are examined in detail on the photoluminescence (PL) property. It is worth noting that coverage of the PANI surface layer on the ZnO interlayer can not only lead to great enhancement in the PL property but also to a maximum PL intensity at a medium PANI surface layer thickness. This maximum PL property is caused by the combined ZnO/PANI carrier transportation and PANI shielding effects. In addition, the nanocomposite films show reasonably good conductivity. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
The crystal‐plane effect of ZnO nanostructures on the toxic 2‐chlorophenol gas‐sensing properties was examined. Three kinds of single‐crystalline ZnO nanostructures including nanoawls, nanorods, and nanodisks were synthesized by using different capping agents via simple hydrothermal routes. Different crystal surfaces were expected for these ZnO nanostructures. The sensing tests results showed that ZnO nanodisks exhibited the greatest sensitivity for the detection of toxic 2‐chlorophenol. The results revealed that the sensitivity of these ZnO samples was heavily dependent on their exposed surfaces. The polar (0001) planes were most reactive and could be considered as the critical factor for the gas‐sensing performance. In addition, calculations using density functional theory were employed to simulate the gas‐sensing reaction involving surface reconstruction and charge transfer both of which result in the change of electronic conductance of ZnO.  相似文献   

9.
This paper presents our results on the successful fabrication of HCl‐doped polyaniline (PANI)/ZnO nanocomposites via an electrochemical synthesis route. Different weight percents of ZnO nanoparticles were uniformly dispersed in the PANI matrix. The interaction between the dispersed ZnO nanoparticle and PANI was studied using X‐ray diffraction, ultraviolet–visible absorption spectroscopy, photoluminescence (PL) spectroscopy, X‐ray photoelectron spectroscopy, atomic force microscopy, thermogravimetry, and transmission electron microscopy. It is shown that the doping state of the PANI/ZnO nanocomposite is highly improved as compared to that of PANI. The dispersed PANI/ZnO nanocomposites exhibit enhanced PL behavior and thermal stability.  相似文献   

10.
To study the surface‐adsorbate properties of ZnO nanowires, a hydrothermal method was modified to grow ZnO nanowires directly on ZnSe, which were then characterized by attenuated total reflection infrared (ATR‐IR) spectroscopy. To prepare ZnO nanowires directly on ATR sensing element of ZnSe, ZnO seed layers were first formed by annealing of ZnO seeds on ZnSe surfaces. The ZnO seed layers then were exposed to growth solution, forming ZnO nanowires directly on the ATR crystals. The interaction properties of the resulting surfaces were studied by an ATR‐IR method. The diameter, length and distribution of the ZnO nanowires can be tuned by adjusting the growth conditions, particularly the growing time and the concentrations of reagents. Two surfaces, namely Zn‐rich and Zn‐O ion‐pair surfaces were studied in detail for their adsorption properties toward compounds bearing different functional groups. By examination of several volatile organic compounds (VOCs), it was found that the Zn‐rich surface is less selective and interacts with compounds bearing the functional groups of amino and hydroxyl. The Zn‐O ion‐pair surface is more selective and a much stronger interaction was observed with non‐aromatic amino compounds. These results indicate that the improving of the selectivity of a ZnO‐based sensing device can be achieved by tuning the surface structure of the ZnO nanomaterials.  相似文献   

11.
The high dispersion and stability of a nanocomposites suspension are required as a crucial factor in many of their applications. In this study, ZnO nanosheets covered with polyaniline (PANI) thin layer (ZnO@PANI) were synthesized by a simple in‐situ polymerization. The as‐prepared ZnO@PANI powders were well characterized by XRD, Raman, FTIR, XPS and photoluminescence spectra, as well as SEM and TEM techniques. The effect of PANI incorporation on the chemical dissolution and dispersing stability of ZnO aqueous suspension was investigated. Dissolution experiments showed that the dissolution of ZnO was effectively restrained by the surface‐hybridized PANI layer. ZnO@PANI suspension can be more stable in a wider pH range. Dynamic Light Scattering (DLS) analysis indicated that ZnO@PANI particles were thoroughly dispersed in the neutral and alkaline solution as proven by the emergence of a single distribution with a high diffused intensity. Sedimentation experiments suggested that ZnO@PANI suspension was a more stable dispersion taking into account the effect of pH and ionic strength.  相似文献   

12.
An electrode of hydrated tungsten oxide (WO3?nH2O) embedded chitosan‐co‐polyaniline (CHIT‐co‐PANI) composite was electrochemically prepared on an indium tin oxide (ITO) coated glass surface using mineral acid as a supporting electrolyte. The resulting CHIT‐co‐PANI/WO3?nH2O/ITO electrode was characterized using ultraviolet‐visible spectroscopy (UV‐vis), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), and scanning electron microscopy (SEM). The composite electrode exhibited a three‐dimensional nanofibrous structure with the diameter of the nanofibers ranging from 20 to 100 nm. The CHIT‐co‐PANI/WO3?nH2O/ITO electrode allowed for the low potential detection of NO2 gas in acidic medium. The NO2 gas sensing characteristics were studied by measuring change in the current with respect to concentration and time. Using the CHIT‐co‐PANI/WO3?nH2O/ITO electrode, NO2 gas was detected electrochemically without interference at pH 2.0 and 0.25 V vs. Ag/AgCl. The current of the electrochemical cell with the CHIT‐co‐PANI/WO3?nH2O/ITO electrode decreased linearly with an increase in NO2 gas concentration in a range from 100 to 500 ppb with a response time of eight seconds.  相似文献   

13.
In this paper, a novel polyaniline (PANI) nanofibers/ionic liquid-functionalized carbon nanotubes (IL-CNTs) composite-modified electrode was prepared, and its application on electrocatalytic oxidation of guanine of sequence-specific DNA was investigated. The surface morphology and the related electrochemical behaviors of the PANI/IL-CNTs composite film were characterized with scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry, respectively. The PANI/IL-CNTs composite showed a good response current toward the direct electrooxidation of ssDNA due to the synergistic effect between PANI nanofibers and IL-CNTs. Based on this, it was adopted as an excellent sensing platform for highly sensitive determination of guanine. The detection limit was 3.1 × 10?9 mol/L.  相似文献   

14.
The synthesis of polyaniline (PANI) with semiconducting layered niobate (NbO) to form PANI/NbO hybrid materials and their reversible color change under a unique redox process under the influence of UV and/or visible light have been investigated. The in-situ polymerization of anilinium chlorides (ANI) packed in a regular orientation in a bilayer structure within the NbO interlayers led to PANI/NbO hybrid powders by heat treatment using (NH(4))(2)S(2)O(8) as the catalyst. The resulting PANI of these hybrids showed the characteristics of a fully oxidized quinoid form, i.e., pernigranine (PG). The PANI/NbO suspension in H(2)O was cast on a glass substrate to form a PANI/NbO film after evaporation of the water with a good parallel orientation of the NbO layers against the glass substrate. Upon UV light irradiation in the presence of a reductant such as MeOH, the violet-colored PANI (PG) polymers within the NbO interlayers were reduced by the NbO-induced photocatalytic reactions and led to a colorless PANI, i.e., leucoemeraldine (LE). Moreover, the resulting colorless PANI/NbO films reverted back to a blue-colored PANI, i.e., emeraldine (EM), due to oxidation by the surrounding O(2) gas. The PANI/NbO hybrid films were able to retain repetitive and reversible photoinduced patterning for over 50 cycles under such alternate UV and visible light irradiation.  相似文献   

15.
A. Airoudj  D. Debarnot  B. Bêche 《Talanta》2009,77(5):1590-1596
Polyaniline (PANI)/glycidyl ether of bisphenol A (SU-8) composite film is elaborated in order to detect ammonia gas. These composite films are characterized by ultraviolet-visible (UV-vis) spectroscopy, Fourier transformed infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The sensitivity to ammonia is measured by optical absorption changes. The ammonia sensing properties of PANI/SU-8 composite films are studied, and then are compared to pure PANI films elaborated by chemical way. Experimental results show that the PANI/SU-8 optical sensor has simultaneously a rapid response to ammonia gas and regenerates easily, that is advantageous compared to pure PANI films.  相似文献   

16.
Camphor‐10‐sulfonic acid (HCSA) doped polyaniline (PANI)/poly(ethylene oxide) (PEO) composite nanofibers with different compositions (12 to 52 wt.% of PANI) were synthesized by an electrospinning method and their properties including optical, electrical and sensing were systematically investigated. FT‐IR shows that an increase of IR absorbance ratios of aromatic C? C stretching vibration of benzenoid rings of PANI to C? O? C symmetric vibrational modes of PEO confirmed that the PANI content in nanofiber mats increased proportionally with increase in PANI content in electrospinning solution. The band gap of PANI was determined to be 2.5 eV using UV‐Vis spectroscopy. The electrical conductivities of the nanofibers increased with an increase in the PANI content in the nanofibers. Additionally, the sensitivity toward NH3 increased as the PANI content increased, but branched nanofibers reduced sensing response. The humidity sensitivity changed from positive to negative as the PANI content increased. The electron transport mechanism was studied by measuring the temperature dependence electrical resistivity. The negative temperature coefficient of resistance revealed a semiconducting behavior for the PANI/PEO nanofibers. The activation energy, calculated by Arrhenius plot, increased as the PANI content decreased. The power law indicated that electrons were being transported in a three dimensional matrix, and the longer hopping distance required more hopping energy for electron transport.  相似文献   

17.
A sensitive optical waveguide(OWG) sensor which can be used to detect volatile organic compounds(VOCs) was presented. The sensing device(element) was fabricated by means of the immobilization of polyvinyl pyrrolidone(PVP)-cyclodextrin(CD) composite film over a single-mode potassium ion exchanged glass OWG via spin-coating method. The sensor shows higher response to styrene gas than to other VOCs and displays a linear response to styrene gas in a range of 1-1000 μL/L.  相似文献   

18.
A novel and highly sensitive colorimetric sensor array was developed for the detection and identification of breath volatile organic compounds(VOCs) of patients with lung cancer.Employing dimeric metalloporphyrins,metallosalphen complexes,and chemically responsive dyes as the sensing elements,the developed sensor array of artificial nose shows a unique pattern of colorific changes upon its exposure to eight less-reactive VOCs and their mixture gas at a concentration of 735 nmol/L within 3 min.Potential of quantitative analysis of VOCs samples was proved.A good linear relationship of 490-3675 nmol/L was obtained for benzene vapor with a detection limit of 49 nmol/L(S/N=3).Data analysis was carried out by Hierarchical cluster analysis(HCA) and principal component analysis(PCA).Each category of breath VOCs clusters together in the PCA score plot.No errors in classification by HCA were observed in 45 trials.Additionaly,the colorimetric sensor array showed good reproducibility under the cyclic sensing experiments.These results demonstrate that the developed colorimetric artificial nose system is an excellent sensing platform for the identification and quantitative analysis of breath VOCs of patients with lung cancer.  相似文献   

19.
The ZnO and gallium-doped ZnO nanoparticles (NPs) were synthesized by simple chemical method and used for the fabrication of p-polyaniline/n-ZnO heterostructures devices in which polyaniline was deposited by plasma-enhanced polymerization. The increment in the crystallite sizes of gallium doped ZnO nanoparticles from ~21.85 nm to ~32.39 nm indicated the incorporation of gallium ion into the ZnO nanoparticles. The surface and structural studies investigated the participation of protonated N atom for the bond formation between polyaniline and gallium-ZnO through partial hydrogen bonding. Compared to a Pt/polyaniline/ZnO diode, the fabricated Pt/polyaniline/gallium-ZnO heterostructure diode exhibited good rectifying behavior with Current–Voltage characteristics of improved saturation current, low ideality factor, and a high barrier height might due to the efficient charge conduction via gallium ion at the junction of the polyaniline/gallium doped-ZnO interface.
Figure
(a) Schematic illustration and (b) I-V characteristics of Pt/PANI/Ga-ZnO heterostructure device. The heterostructure device is obtained by a top Pt layer on PECVD deposited PANI/Ga-ZnO electrodes. The fabricated Pt/PANI/Ga-ZnO heterostructure device displays non-linear and rectifying behavior of I–V curve due to the existence of Schottky barrier via a Schottky contact at the interfaces of Pt layer and PANI/Ga-ZnO thin film layer.  相似文献   

20.
采用电纺丝技术结合高温煅烧制备了铜掺杂氧化锌复合纳米纤维,并通过XRD,XPS,SEM和TEM等手段对材料进行表征.将所得材料作为敏感层构筑了气体传感器,器件对乙醇蒸气具有很好的传感特性,特别是当Cu/Zn摩尔比为1∶60时,由于Cu组分的活化作用,所得传感器不仅具有高灵敏度、快速响应恢复(2 s/7 s)特性及优良的稳定性,而且在5~104μg/g超大乙醇蒸气浓度范围内都能保持良好的线性关系(R2=0.99),这不仅有利于乙醇实际检测,而且对宽响应范围及高灵敏传感器的发展具有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号