首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Molar enthalpies of sublimation of 1,2-di-hydroxybenzene, 1,3-di-hydroxybenzene, and 1,4-di-hydroxybenzene were obtained from the temperature dependence of the vapor pressure measured by the transpiration method. The molar enthalpies of fusion of 1,2- and 1,4-isomers were measured by differential scanning calorimetry (DSC). A large number of the primary experimental results on the temperature dependences of vapor pressure and phase transitions have been collected from the literature and have been treated in a uniform manner in order to derive sublimation, vaporization and fusion enthalpies of di-hydroxybenzenes at the reference temperature 298.15 K. The data sets on phase transitions were checked for internal consistency. This collection together with the new experimental results reported here has helped to resolve contradictions in the available thermochemical data and to recommend consistent and reliable sublimation, vaporization and fusion enthalpies for all three isomers under study.  相似文献   

3.
Molar enthalpies of sublimation of two crystal forms of caffeine were obtained from the temperature dependence of the vapour pressure measured by the transpiration method. A large number of primary experimental results on the temperature dependences of vapour pressure and phase transitions have been collected from the literature and have been treated in a uniform manner in order to derive sublimation enthalpies of caffeine at T = 298.15 K. This collection together with the new experimental results reported here has helped to resolve contradictions in the available sublimation enthalpies data and to recommend a consistent and reliable set of sublimation and formation enthalpies for both crystal forms under study. Ab initio calculations of the gaseous molar enthalpy of formation of caffeine have been performed using the G3MP2 method and the results are in excellent agreement with the selected experimental data.  相似文献   

4.
A brief review of the experimental methods used to evaluate vapour pressures and sublimation enthalpies is presented. The methods discussed have been used for determining the results of several substituted benzenes that were collected in a database, with the main purpose of developing new estimation methods of these thermodynamic properties. A critical evaluation of the two most used calorimetric techniques for determining enthalpies of sublimation is also addressed.  相似文献   

5.
Temperature dependence of saturated vapor pressure has been determined for five phenyl and furyl derivatives of acrylic acid. Processing of the experimental data has given standard enthalpy, entropy, and the Gibbs free energy of sublimation of the studied compounds. Additivity of the sublimation enthalpies has been confirmed, and enthalpies of sublimation of the constituting fragments have been calculated.  相似文献   

6.
The standard (p(o) = 0.1 MPa) molar enthalpies of formation of 2,3-, 2,4-, 2,5-, 2,6-, 3,4- and 3,5-dichloroanilines were derived from the standard molar energies of combustion, in oxygen, to yield CO(2)(g), N(2)(g) and HCl.600H(2)O(l), at T = 298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high-temperature vacuum sublimation technique was used to measure the enthalpies of sublimation of the six isomers. These two thermodynamic parameters yielded the standard molar enthalpies of formation of the six isomers of dichloroaniline, in the gaseous phase, at T = 298.15 K. The gas-phase enthalpies of formation were also estimated by G3MP2B3 calculations, which were further extended to the computation of gas-phase acidities, proton affinities, and ionization enthalpies.  相似文献   

7.
The standard (p degrees = 0.1 MPa) molar enthalpies of formation of 2-, 3-, and 4-chloroaniline were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high-temperature vacuum sublimation technique was used to measure the enthalpies of vaporization or sublimation of the three isomers. These two thermodynamic parameters yielded the standard molar enthalpies of formation of the three isomers of chloroaniline, in the gaseous phase, at T = 298.15 K, as 53.4 +/- 3.1 kJ.mol(-1) for 2-chloroaniline, 53.0 +/- 2.8 kJ.mol(-1) for 3-chloroaniline, and 59.7 +/- 2.3 kJ.mol(-1) for 4-chloroaniline. These values, which correct previously published data, were used to test the computational methodologies used. Therewith, gas-phase acidities, proton affinities, electron donor capacities, and N-H bond dissociation enthalpies were calculated and found to compare well with available experimental data for these parameters.  相似文献   

8.
Experimental solubility data of solid–supercritical fluids have significantly increased in the last few years, and semiempirical models are emerging as one of the best choices to fit this type of data. This work establishes a methodology to calculate sublimation pressures using this type of equations. It requires the use of Bartle’s equation to model equilibria data solid–supercritical fluids with the aim of determining the vaporization enthalpy of the compound. Using this method, low deviations were obtained by calculating sublimation pressures and sublimation enthalpies. The values of the sublimation pressures were subsequently used to successfully model different multiphasic equilibria, as solid–supercritical fluids and solid–solvent–supercritical fluids with the Peng–Robinson equation of state (without considering the sublimation pressure as an adjustable parameter). On the other hand, the sublimation pressures were also used to calculate solid sublimation properties and acetaminophen solvation properties in some solvents. Also, solubility data solid–supercritical fluids from 62 pharmaceuticals were fitted with different semiempirical equations (Chrastil, Kumar-Johnston and Bartle models) in order to present the values of solvation enthalpies in sc-CO2 and vaporization enthalpies for these compounds. All of these results highlight that semiempirical models can be used for any other purpose as well as modeling (solid + supercritical fluids) equilibria.  相似文献   

9.
The enthalpies and temperatures of melting and sublimation of acridin-9(10H)-one, 10-methylacridin-9(10H)-one, 2,10-dimethylacridin-9(10H)-one, 10-methyl-2-nitroacridin-9(10H)-one, 10-ethylacridin-9(10H)-one and 10-phenylacridin-9(10H)-one were measured by DSC. Enthalpies and temperatures of volatilisation were also obtained by fitting TG curves to the Clausius-Clapeyron relationship. Complementary investigations for anthracene showed the extent to which the thermodynamic characteristics thus obtained compare with those determined by means of other techniques. For compounds whose crystal structures are known, experimental enthalpies of sublimation correspond reasonably well to crystal lattice enthalpies predicted theoretically as the sum of electrostatic, dispersive and repulsive interactions. Analysis of crystal lattice enthalpy contributions indicates that dispersive interactions always predominate. Interactions are enhanced in acridin-9(10H)-one where intermolecular hydrogen bonds occur: this is reflected in the relatively high enthalpy of sublimation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The melting points and melting enthalpies of nine phenyl acridine-9-carboxylates—nitro-, methoxy- or halogen-substituted in the phenyl fragment—and their 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulphonate derivatives were determined by DSC. The volatilisation temperatures and enthalpies of phenyl acridine-9-carboxylates were either measured by DSC or obtained by fitting TG curves to the Clausius–Clapeyron relationship. For the compounds whose crystal structures are known, crystal lattice energies and enthalpies were determined computationally as the sum of electrostatic, dispersive and repulsive interactions. By combining the enthalpies of formation of gaseous phenyl acridine-9-carboxylates or 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulphonate ions, obtained by the DFT method, and the corresponding enthalpies of sublimation and/or crystal lattice enthalpies, the enthalpies of formation of the compounds in the solid phase were predicted. In the case of the phenyl acridine-9-carboxylates, the computationally predicted crystal lattice enthalpies correspond reasonably well with the experimentally obtained enthalpies of sublimation. The crystal lattices of phenyl acridine-9-carboxylates are stabilised predominantly by dispersive interactions between molecules, whilst the crystal lattices of their quaternary salts are stabilised by electrostatic interactions between ions.  相似文献   

11.
The melting enthalpies and melting points of phenyl acridine-9-carboxylate, its eleven alkyl-substituted derivatives in the phenyl fragment and eight 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulphonates derived from them, were determined by DSC. The volatilisation enthalpies and temperatures of twelve phenyl acridine-9-carboxylates were either measured by DSC or obtained by fitting TG curves to the Clausius–Clapeyron relationship. For the compounds whose crystal structures are known, crystal lattice enthalpies were determined computationally as the sum of electrostatic, dispersive and repulsive interactions. By combining the enthalpies of formation of gaseous phenyl acridine-9-carboxylates or 9-phenoxycarbonyl-10-methylacridinium and trifluoromethanesulphonate ions, obtained by quantum chemistry methods, and the corresponding enthalpies of sublimation or crystal lattice enthalpies, the enthalpies of formation of the compounds in the solid phase were predicted. In the case of the phenyl acridine-9-carboxylates, the computationally predicted crystal lattice enthalpies correspond reasonably well to the experimentally obtained enthalpies of sublimation. Analysis of crystal lattice enthalpy contributions indicates that the crystal lattices of phenyl acridine-9-carboxylates are stabilised predominantly by dispersive interactions between molecules, whereas the crystal lattices of their quaternary salts are stabilised by electrostatic interactions between ions.  相似文献   

12.
In this work, we have determined the experimental standard ( = 0.1 MPa) molar enthalpies of formation, in gas phase, of flavone and flavanone.These results were obtained by combining the standard molar enthalpies of formation in the condensed phase with the standard molar enthalpies of sublimation. The former values were derived from combustion experiments in oxygen, at T = 298.15 K, in a static bomb calorimeter. The values of the standard molar enthalpies of sublimation were obtained by Calvet microcalorimetry and corrected to T = 298.15 K.High-level density functional theory calculations using the B3LYP hybrid exchange–correlation energy functional with extended basis sets and more accurate correlated computational techniques of the MCCM/3 suite have been performed for the compounds.The obtained results, experimental and computational, for flavone and flavanone were compared with those obtained for chromone and chromanone, respectively.  相似文献   

13.
The enthalpies of combustion for 4-formylbenzoic acid (I), 4-methylbenzyl alcohol (II), and trimethyl 1,2,4-benzenetricarboxylate (III) were determined by the bomb calorimetry method. Enthalpies of sublimation for I and II were measured with a calorimeter. The contributions of different substituents to the standard enthalpies of formation for benzene derivatives in the gas state were derived. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
15.
Condensed phase standard (p degrees = 0.1 MPa) molar enthalpies of formation for 1-indanone, 2-indanone, and 1,3-indandione were derived from the standard molar enthalpies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The standard molar enthalpies of sublimation for 1-indanone and 2-indanone, at T = 298.15 K, were measured both by correlation-gas chromatography and by Calvet microcalorimetry leading to a mean value for each compound. For 1,3-indandione, the standard molar enthalpy of sublimation was derived from the vapor pressure dependence on temperature. The following enthalpies of formation in gas phase, at T = 298.15 K, were then derived: 1-indanone, -64.0 +/- 3.8 kJ mol(-1); 2-indanone, -56.6 +/- 4.8 kJ mol(-1); 1,3-indandione, -165.0 +/- 2.6 kJ mol(-1). The vaporization and fusion enthalpies of the indanones studied are also reported. In addition, theoretical calculations using the density functional theory with the B3LYP and MPW1B95 energy functionals and the 6-311G** and cc-pVTZ basis sets have been performed for these molecules and the corresponding one-ring species to obtain the most stable geometries and to access their energetic stabilities.  相似文献   

16.
This work presents a new approach for estimating sublimation enthalpies and vapor pressures of substituted benzenes. Proposed estimating equations were based on a collection of selected literature results of vapor pressures of ca. 240 benzene derivatives attached with 30 different substituents. Compared to experimental results, best estimates are obtained from the equations that include the temperature of fusion. A review of the results determined for substituted benzenes using two different calorimetric techniques shows that the results of enthalpies of sublimation derived from vapor pressures seem to be more reliable than those derived from the calorimetric techniques.  相似文献   

17.
The mean (N-O) bond dissociation enthalpies were derived for three 2-methyl-3-(R)-quinoxaline 1,4-dioxide (1) derivatives, with R = methyl (1a), ethoxycarbonyl (1b), and benzyl (1c). The standard molar enthalpies of formation in the gaseous state at T = 298.15 K for the three 1 derivatives were determined from the enthalpies of combustion of the crystalline solids and their enthalpies of sublimation. In parallel, accurate density functional theory-based calculations were carried out in order to estimate the gas-phase enthalpies of formation for the corresponding quinoxaline derivatives. Also, theoretical calculations were used to obtain the first and second N-O dissociation enthalpies. These dissociation enthalpies are in excellent agreement with the experimental results herewith reported.  相似文献   

18.
The enthalpies of combustion of some pyridine derivatives in the solid state have been measured by precision bomb calorimetry, and their enthalpies of formation have been calculated. The enthalpies of sublimation of these compounds have been determined from the experimental temperature dependences of saturated vapor pressure using the Clausius-Clapeyron equation. The enthalpies of combustion, formation, and sublimation are the following (kJ mol–1): -3360.9±2.1, -0.5±2.1, and 79.1±1.3, respectively, for 4-methylpyridine 1-oxide; -2551.0±1.7, 11.7±1.7, and 89.1±2.5, respectively, for 4-nitropyridine 1-oxide;-2355.6±1.3, 102.1±1.3, and 106.3±2.9 for 2,4,6-trinitropyridine 1-oxide; and -2287.6±1.3, 34.3±1.3, and 101.7±2.9 for 2,4,6-trinitropyridine. The enthalpies of formation in the solid state and the enthalpies of sublimation of pyridine derivatives obtained together with the literature data allowed the energies of dissociation of the donor-acceptor N—O bonds in pyridine 1-oxides to be calculated.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 660–662, April, 1995.  相似文献   

19.
The standard (p degrees = 0.1 MPa) molar enthalpies of formation in the condensed phase of all the fluoroanilines, with the exception of the 2,3,5-trifluoroaniline compound, were derived from the standard molar energies of combustion in oxygen at T = 298.15 K, measured by rotating bomb combustion calorimetry. Calvet high-temperature vacuum sublimation experiments were performed to measure their enthalpies of vaporization or sublimation. These experiments allowed the determination of the standard molar enthalpies of formation in the gaseous phase and at T = 298.15 K. These values are also compared with estimates based on G3MP2B3 and BP86/6-31+G(d) computations, which have been extended also to the fluoroaniline that was not studied experimentally. The results are in close agreement with a mean deviation of approximately 3 kJ.mol-1. The largest difference between experimental and G3MP2B3 values is found for the pentafluoroaniline (-7.0 kJ.mol-1). For the three monofluoroanilines, the composite approach has been used also to compute gas-phase acidities, electron and proton affinities, ionization enthalpies and N-H bond dissociation enthalpies. The computed values compare well with available experimental results supporting the new computed data.  相似文献   

20.
适用于TATB,RDX,HMX含能材料的全原子力场的建立与验证   总被引:1,自引:0,他引:1  
报道一个适用于三种常见的含能材料分子三硝基三氨基苯(TATB),环三亚甲基三硝胺(RDX),环四亚甲基四硝胺(HMX)的全原子力场.力场采用广泛使用的力场函数形式,其中键参数通过拟合量子化学密度泛函计算的数据获得,电荷参数和范德华参数通过拟合相应的分子晶体的物理性质(密度和升华焓)优化得到.通过计算分子和分子晶体的性质显示该力场可以用来准确地预测分子结构、分子振动频率和分子晶体的晶胞参数、密度和升华焓.进一步的验证显示该力场可用来较为准确地预测分子晶体的状态方程和机械模量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号