首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a Density Functional or Time Dependent Density Functional (DFT/TDDFT) study of the molecular and electronic structures, optical absorption and emission spectra of three linkage isomers: bis(isothiocyanato-S)(2,2^1-bipyridyl) platinum(II) ([Pt(SCN)2(bpy)]), (isothiocyanato-S)(thiocyanato-N)-(2,2^1-bipy- ridyl) platinum(II) ([Pt(SCN)(NCS)(bpy)]), and bis(thiocyanato-N)(2,2^1)-bipyridyl)platinum(II) ([Pt(NCS)2(bpy)]), in which different coordination ligands based on the N- and S-coordination of the thiocyanato ligands control the luminescent color. The electronic structures were studied using the B3LYP functional. Optimized geometries Were compared to the experimentally observed structures. TDDFT calculation was carded out to investigate the excited singlet and triplet states. Calculations have been performed both in vacuo and in solvents, using a polarized continuum model (PCM) to account for solute-solvent interactions. Inclusion of the solvent led to a significant energy change, and as a consequence, the computed spectrum calculated in the presence of the solvent was in good agree- ment with the experimental determinations. The first two absorptions were found to originate from mixed plati- num-SCN (or NSC) to bipyridyl-n* transitions rather than pure metal-to-ligand-charge-transfer (MLCT) transitions, whereas the higher-energy bands arose from intraligand n→π* transitions. The stretching frequencies of C≡N have been calculated both in the ground and excited states, which are relative to the charge transition during the excitation. In addition, different sizes of basis sets were also discussed in this paper.  相似文献   

2.
The electronic spectrum of the confacial bioctahedral complex Cs(3)Mo(2)Br(9) has been investigated by single-crystal absorption, Zeeman, and MCD spectroscopies. A total of seven distinct band regions were resolved and assigned to transitions essentially within the t(2)(2)t(2)(2) configuration that arises when the pair of t(2)(z)() orbitals in the t(2)(3)t(2)(3) configuration is decoupled by strong Mo-Mo sigma bonding. The excited state separations, and in particular the orbital g values, are sensitive to Mo-Mo pi bonding and show clearly that the pi bonding is weaker in the bromide than in the chloride complex.  相似文献   

3.
Transient absorption spectroscopy has been used to elucidate the nature of the S1 intermediate state populated following excitation of cob(III)alamin (Cbl(III)) compounds. This state is sensitive both to axial ligation and to solvent polarity. The excited-state lifetime as a function of temperature and solvent environment is used to separate the dynamic and electrostatic influence of the solvent. Two distinct types of excited states are identified, both assigned to pi3d configurations. The spectra of both types of excited states are characterized by a red absorption band (ca. 600 nm) assigned to Co 3d --> 3d or Co 3d --> corrin pi* transitions and by visible absorption bands similar to the corrin pi-->pi* transitions observed for ground state Cbl(III) compounds. The excited state observed following excitation of nonalkyl Cbl(III) compounds has an excited-state spectrum characteristic of Cbl(III) molecules with a weakened bond to the axial ligand (Type I). A similar excited-state spectrum is observed for adenosylcobalamin (AdoCbl) in water and ethylene glycol. The excited-state spectrum of methyl, ethyl, and n-propylcobalamin is characteristic of a Cbl(III) species with a sigma-donating alkyl anion ligand (Type II). This Type II excited-state spectrum is also observed for AdoCbl bound to glutamate mutase. The results are discussed in the context of theoretical calculations of Cbl(III) species reported in the literature and highlight the need for additional calculations exploring the influence of the alkyl ligand on the electronic structure of cobalamins.  相似文献   

4.
The tautomerization equilibria of 3-hydroxy-2-mercaptopyridine (HMP) and 2,3-dihydroxypyridine (DHP) in vacuo and in ethanol solution have been studied using the density functional theory (DFT) at B3LYP/6-31Gd level. The results indicate that the thione form of HMP and the keto form of DHP are the most stable tautomers in the equilibrium, and the energy barrier for the thiol-thione and enol-keto proton transfer decreases significantly when the tautomerism is mediated by a specific ethanol molecule in solution. The time-dependent density functional theory--polarizable continuum model (TDDFT-PCM) calculations on all tautomers of HMP and DHP in vacuo and in ethanol have assigned the lowest pi --> pi* excitations of thione and keto tautomers to the observed absorption bands of HMP and DHP in solutions. The solvation is predicted to have relatively small effect on these pi --> pi* excitations in ethanol.  相似文献   

5.
The first designed molecular catalyst for water oxidation is the "blue dimer", cis,cis-[(bpy)(2)(H(2)O)Ru(III)ORu(III)(OH(2))(bpy)(2)](4+). Although there is experimental evidence for extensive electronic coupling across the μ-oxo bridge, results of earlier DFT and CASSCF calculations provide a model with magnetic interactions of weak to moderately coupled Ru(III) ions across the μ-oxo bridge. We present the results of a comprehensive experimental investigation, combined with DFT calculations. The experiments demonstrate both that there is strong electronic coupling in the blue dimer and that its effects are profound. Experimental evidence has been obtained from molecular structures and key bond distances by XRD, electrochemically measured comproportionation constants for mixed-valence equilibria, temperature-dependent magnetism, chemical properties (solvent exchange, redox potentials, and pK(a) values), XPS binding energies, analysis of excitation-dependent resonance Raman profiles, and DFT analysis of electronic absorption spectra. The spectrum can be assigned based on a singlet ground state with specific hydrogen-bonding interactions with solvent molecules included. The results are in good agreement with available experimental data. The DFT analysis provides assignments for characteristic absorption bands in the near-IR and visible regions. Bridge-based dπ → dπ* and interconfiguration transitions at Ru(III) appear in the near-IR and MLCT and LMCT transitions in the visible. Reasonable values are also provided by DFT analysis for experimentally observed bond distances and redox potentials. The observed temperature-dependent magnetism of the blue dimer is consistent with a delocalized, diamagnetic singlet state (dπ(1)*)(2) with a low-lying, paramagnetic triplet state (dπ(1)*)(1)(dπ(2)*)(1). Systematic structural-magnetic-IR correlations are observed between ν(sym)(RuORu) and ν(asym)(RuORu) vibrational energies and magnetic properties in a series of ruthenium-based, μ-oxo-bridged complexes. Consistent with the DFT electronic structure model, bending along the Ru-O-Ru axis arises from a Jahn-Teller distortion with ∠Ru-O-Ru dictated by the distortion and electron-electron repulsion.  相似文献   

6.
The preparation and the properties of several ruthenium complexes of the general formula cis-RuL(2)X(2) with L = 2,2'-bipyridine-4,4'-bisphosphonic acid, L' = 2,2'-bipyridine-5,5'-bisphosphonic acid, and X = Cl, CN, or NCS are reported. The synthesis of these complexes relies on the preparation of the key intermediates cis-Ru(bipyridinebis(diethyl ester phosphonate))Cl(2). The ground-state second pK(a) values of the thiocyanato complexes were determined and are 6.0 and 6.1 for cis-RuL(2)(NCS)(2) and for cis-RuL'(2)(NCS)(2), respectively. For these species, (13)C NMR and IR demonstrate that the thiocyanato ligands are bound to Ru via the N atom. The new complexes exhibit a blue-shifted electronic absorption spectrum with respect to the analogous complexes containing carboxylic acid groups. Density functional theory molecular orbital calculations show that the LUMO of the bipyridine phosphonated ligands is at higher energy than the corresponding dicarboxylate complexes and that the thiocyanato ligands are not simple spectator ligands, whose role is to enrich electron density on the ruthenium, but are also involved in transitions from PiRu-NCS to Pibpy that extend the absorbance of the dye in the low energy part of the absorption spectrum. The photoaction spectra recorded in a sandwich regenerative photovoltaic cell indicate that the cyano and thiocyanato complexes containing the bipyridine substituted in 4,4' positions exhibit a 90-95% photoconversion efficiency on the MLCT band, whereas those containing the bipyridine substituted in 5,5' positions display lower efficiency (60-65%). The most efficient complex in the series is cis-RuL(2)(NCS)(2); however, its overall efficiency is about 30% lower than the analogue cis-Ru(H(2)dcb)(2)(NCS)(2) (H(2)dcb = 2,2'-bipyridine-4,4'-dicarboxylic acid) due to a lower absorbance in the red part of the visible spectrum.  相似文献   

7.
We have synthesized the complex [Ru(bpy)(2)(bpy(OH)(2))](2+) (bpy =2,2'-bipyridine, bpy(OH)(2) = 4,4'-dihydroxy-2,2'-bipyridine). Experimental results coupled with computational studies were utilized to investigate the structural and electronic properties of the complex, with particular attention paid toward the effects of deprotonation on these properties. The most distinguishing feature observed in the X-ray structural data is a shortening of the CO bond lengths in the modified ligand upon deprotonation. Similar results are also observed in the computational studies as the CO bond becomes double bond in character after deprotonating the complex. Electrochemically, the hydroxy-modified bipyridyl ligand plays a significant role in the redox properties of the complex. When protonated, the bpy(OH)(2) ligand undergoes irreversible reduction processes; however, when deprotonated, reduction of the substituted ligand is no longer observed, and several new irreversible oxidation processes associated with the modified ligand arise. pH studies indicate [Ru(bpy)(2)(bpy(OH)(2))](2+) has two distinct deprotonations at pK(a1) = 2.7 and pK(a2) = 5.8. The protonated [Ru(bpy)(2)(bpy(OH)(2))](2+) complex has a characteristic UV/Visible absorption spectrum similar to the well-studied complex [Ru(bpy)(3)](2+) with bands arising from Metal-to-Ligand Charge Transfer (MLCT) transitions. When the complex is deprotonated, the absorption spectrum is altered significantly and becomes heavily solvent dependent. Computational methods indicate that the deprotonated bpy(O(-))(2) ligand mixes heavily with the metal d orbitals leading to a new absorption manifold. The transitions in the complex have been assigned as mixed Metal-Ligand to Ligand Charge Transfer (MLLCT).  相似文献   

8.
The electronic structure and metal-metal bonding in the classic d(7)d(7) tetra-bridged lantern dimer [Pt(2)(O(2)CCH(3))(4)(H(2)O)(2)](2+) has been investigated by performing quasi-relativistic Xalpha-SW molecular orbital calculations on the analogous formate-bridged complex. From the calculations, the highest occupied and lowest unoccupied metal-based levels are delta(Pt(2)) and sigma(Pt(2)), respectively, indicating a metal-metal single bond analogous to the isoelectronic Rh(II) complex. The energetic ordering of the main metal-metal bonding levels is, however, quite different from that found for the Rh(II) complex, and the upper metal-metal bonding and antibonding levels have significantly more ligand character. As found for the related complex [W(2)(O(2)CH)(4)], the inclusion of relativistic effects leads to a further strengthening of the metal-metal sigma bond as a result of the increased involvement of the higher-lying platinum 6s orbital. The low-temperature absorption spectrum of [Pt(2)(O(2)CCH(3))(4)(H(2)O)(2)](2+) is assigned on the basis of Xalpha-SW calculated transition energies and oscillator strengths. Unlike the analogous Rh(II) spectrum, the visible and near-UV absorption spectrum is dominated by charge transfer (CT) transitions. The weak, visible bands at 27 500 and 31 500 cm(-)(1) are assigned to Ow --> sigma(Pt(2)) and OAc --> sigma(Pt(2)) CT transitions, respectively, although the donor orbital in the latter transition has around 25% pi(Pt(2)) character. The intense near-UV band around 37 500 cm(-)(1) displays the typical lower energy shift as the axial substituents are changed from H(2)O to Cl and Br, indicative of significant charge transfer character. From the calculated oscillator strengths, a number of transitions, mostly OAc --> sigma(Pt-O) CT in nature, are predicted to contribute to this band, including the metal-based sigma(Pt(2)) --> sigma(Pt(2)) transition. The close similarity in the absorption spectra of the CH(3)COO(-), SO(4)(2)(-), and HPO(4)(2)(-) bridged Pt(III) complexes suggests that analogous spectral assignments should apply to [Pt(2)(SO(4))(4)(H(2)O)(2)](2)(-) and [Pt(2)(HPO(4))(4)(H(2)O)(2)](2)(-). Consequently, the anomalous MCD spectra reported recently for the intense near-UV band in the SO(4)(2)(-) and HPO(4)(2)(-) bridged Pt(III) complexes can be rationalized on the basis of contributions from either SO(4) --> sigma(Pt-O) or HPO(4) --> sigma(Pt-O) CT transitions. The electronic absorption spectrum of [Rh(2)(O(2)CCH(3))(4)(H(2)O)(2)] has been re-examined on the basis of Xalpha-SW calculated transition energies and oscillator strengths. The intense UV band at approximately 45 000 cm(-)(1) is predicted to arise from several excitations, both metal-centered and CT in origin. The lower energy shoulder at approximately 40 000 cm(-)(1) is largely attributed to the metal-based sigma(Rh(2)) --> sigma(Rh(2)) transition.  相似文献   

9.
The title compound, 1-acetyl-3-(2,4-dichloro-5-fluoro-phenyl)-5-phenyl-pyrazoline, has been synthesized and characterized by elemental analysis, IR, UV-vis and X-ray single crystal diffraction. Density functional (DFT) calculations have been carried out for the title compound by using B3LYP method at 6-31G* basis set. The calculated results show that the predicted geometry can well reproduce the structural parameters. Predicted vibrational frequencies have been assigned and compared with experimental IR spectra and they are supported each other. The theoretical electronic absorption spectra have been calculated by using TD-DFT method. Molecular orbital coefficients analyses suggest that the above electronic transitions are mainly assigned to n-->pi* and pi-->pi* electronic transitions. On the basis of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated, revealing the correlations between C(p,m)(0),S(m)(0),H(m)(0) and temperatures.  相似文献   

10.
The C K-edge photoabsorption and 1s core-level photoemission of pentacene (C22H14) free molecules are experimentally measured, and calculated by self-consistent-field and static-exchange approximation ab initio methods. Six nonequivalent C atoms present in the molecule contribute to the C 1s photoemission spectrum. The complex near-edge structures of the carbon K-edge absorption spectrum present two main groups of discrete transitions between 283 and 288 eV photon energy, due to absorption to pi* virtual orbitals, and broader structures at higher energy, involving sigma* virtual orbitals. The sharp absorption structures to the pi* empty orbitals lay well below the thresholds for the C 1s ionizations, caused by strong excitonic and localization effects. We can definitely explain the C K-edge absorption spectrum as due to both final (virtual) and initial (core) orbital effects, mainly involving excitations to the two lowest-unoccupied molecular orbitals of pi* symmetry, from the six chemically shifted C 1s core orbitals.  相似文献   

11.
12.
A comprehensive study of a series of four monodisperse, metal-organic pi-conjugated oligomers of varying length is reported. The oligomers are based on the aryleneethynylene architecture, and they contain a 2,2'-bipyridine-5,5'-diyl (bpy) metal binding unit. The photophysical properties of the free oligomers and their complexes with the (L)Re(I)(CO)(3)X chromophore (where L = the bpy-oligomer and X = Cl or NCCH(3)) were explored by a variety of methods including electrochemistry, UV-visible absorption, variable temperature photoluminescence (PL), transient absorption (TA), and time-resolved electron paramagnetic spectroscopy (TREPR). The absorption of the free oligomers and the metal complexes is dominated by the pi,pi* transitions of the pi-conjugated oligomers. The free oligomers feature a strong blue fluorescence that is quenched entirely in the (L)Re(I)(CO)(3)X complexes. The metal-oligomers feature a weak, relatively long-lived red photoluminescence that is assigned to emission from both the (3)pi,pi* manifold of the pi-conjugated system and the dpi Re --> pi* bpy-oligomer metal-to-ligand charge transfer ((3)MLCT) state. On the basis of a detailed analysis of the PL, TA, and TREPR results an excited-state model is developed which indicates that the oligomer-based (3)pi,pi* state and the (3)MLCT states are in close energetic proximity. Consequently the photophysical properties reflect a composite of the properties of the two excited-state manifolds.  相似文献   

13.
Numerous reports describe the photoluminescence of two- and three-coordinate gold(I)-phosphine complexes, but emission in their analogous four-coordinate complexes is almost unknown. This work examines the luminescence of tetrahedral gold(I) complexes of the types [Au(diphos)(2)]PF(6) (diphos = 1,2-bis(diphenylphosphino)ethane, 1) and [Au(2)(tetraphos)(2)](PF(6))(2) (tetraphos = (R,R)-(+/-)/(R,S)-1,1,4,7,10,10-hexaphenyl-1,4,7,10-tetraphosphadecane, (R,R)-(+/-)/(R,S)-2). Although nonemitting in solution, these complexes luminesce with an intense yellow color (lambda(max) 580-620 nm) at 293 K in the solid state or when immobilized as molecular dispersions within solid matrixes. The excited-state lifetimes of the emissions (tau 4.1-9.4 micros) are markedly dependent on the inter- and intramolecular phenyl-phenyl pairing interactions present. At 77 K in an ethanol glass, two transitions are observed: a minor emission at lambda(max) 415-450 nm and a major emission at lambda(max) 520-595 nm. For [Au(1)(2)]PF(6), lifetimes of tau 251.0 +/- 20.5 micros were determined for the former transition and tau 14.9 +/- 4.6 micros for the latter. Density functional theory (DFT) calculations and comparative studies indicate that the former of these emissions involves triplet LMCT pi(Ph) --> Au(d)-P(p) transitions associated with individual P-phenyl groups. The latter emissions, which are the only ones observed at 293 K, are assigned to LMCT pi(Ph-Ph) --> Au(d)-P(p) transitions associated with excited P-phenyl dimers. Other tetrahedral gold(I)-phosphine complexes containing paired P-Ph substituents display similar emissions. The corresponding phosphine ligands, whether free, protonated, or bound to Ag(I), do not exhibit comparable emissions. Far from being rare, luminescence in four-coordinate Au(I)-phosphine complexes appears to be general when stacked P-phenyl groups are present.  相似文献   

14.
The electronic absorption spectra of: 2-, 3-, and 4-azidopyridines have been investigated in a wide variety of polar and non-polar solvents. According to Onsager model, the studied spectra indicate that the orientation polarization of solvent dipoles affects the electronic spectrum much stronger than the induction polarization of solvent dipoles. The effect of solvent dipole moment predominates that of solvent refractive index in determining the values of band maxima of an electronic spectrum. The spectra of azidopyridines differ basically from these of pyridine or mono-substituted pyridine. Results at hand indicate that the azide group perturbs the pyridine ring in the case of 3-azidopyridine much more than it does in the case of 2-azidopyridine. This result agrees with the predictions of the resonance theory. Although the equilibrium <==> azide tetrazole is well known, yet the observed spectra prove that such an equilibrium does not exist at the studied conditions. The spectra of the studied azidopyridines are characterized by the existence of overlapping transitions. Gaussian analysis is used to obtain nice, resolved spectra. All the observed bands correspond to pi-->pi* transitions, n-->pi* may be overlapped with the stronger pi-->pi* ones.  相似文献   

15.
Semiempirical molecular orbital theory and semiclassical solvent effect theory are used to analyze the conformational and electronic properties of the 12-s-cis and 12-s-trans conformers of 11-cis retinal. The goal is to examine the influence of solvent environment on the equilibrium geometries of these conformers as well as to provide a perspective on the electronic transitions that contribute to the four band systems that are observed in the 200-500 nm region of the optical spectrum. We conclude that the 12-s-cis isomer is more stable in vacuum, but that the 12-s-trans conformer is preferentially stabilized in both polar and nonpolar solvent environment due to dispersive as well as electrostatic interactions. This observation is in substantial agreement with previous literature results. In contrast, our analysis of the excited state manifold indicates that the spectral features observed in the absorption spectrum are associated with a complex set of overlapping transitions. A total of 18 pi*<--pi transitions contribute to the four bands, and in some cases, conformation changes the relative contribution of the individual transitions that define the overall band shape. This study provides the first definitive assignments for all four band systems.  相似文献   

16.
The absorption and fluorescence spectra of Rose Bengal dye were studied in various solvents. It was found that solvent effects on the absorption wavelength are consistent with the solvatochromic model of Kamlet, Abboud and Taft. The solvent polarizability value pi* was found to have a linear relationship with the absorption wavelength of the dye in various solvents. Additionally, the normalized transition energy value (E(T)(N)) showed some scattering when plotted versus Deltanu(af). Density functional calculations were used to assign the absorption in the region 540-570 nm to a pi-pi* transition between the HOMO and LUMO of the anion. Experimental ground state and excited state dipole moments were calculated by using the solvatochromatic shifts of absorption and fluorescence spectra as a function of the dielectric constant (epsilon) and refractive index (n). The dipole moment for Rose Bengal was found to be 1.72 Debye in the ground state, whereas this value was 2.33 Debye in the excited state.  相似文献   

17.
The photophysical and electrochemical properties of a platinum(II) diimine complex bearing the bidentate diacetylide ligand tolan-2,2'-diacetylide (tda), Pt(dbbpy)(tda) [dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine] (1), are compared with two reference compounds, Pt(dbbpy)(C[triple bond]CPh)(2) (2) and Pt(dppp)tda [dppp = 1,3-bis(diphenylphosphino)propane] (3), respectively. The X-ray crystal structure of 1 is reported, which illustrates the nearly perfect square planarity exhibited by this metallacycle. Chromophore 2 possesses low-lying charge-transfer excited states analogous to 1, whereas structure 3 lacks such excited states but features a low-lying platinum-perturbed tda intraligand triplet manifold. In CH(2)Cl(2), 1 exhibits a broad emission centered at 562 nm at ambient temperature, similar to 2, but with a higher photoluminescence quantum yield and longer excited-state lifetime. In both instances, the photoluminescence is consistent with triplet-charge-transfer excited-state parentage. The rigidity imposed by the cyclic diacetylide ligand in 1 leads to a reduction in nonradiative decay, which enhances its room-temperature photophysical properties. By comparison, 3 radiates highly structured tda-localized triplet-state phosphorescence at room temperature. The 77 K emission spectrum of 1 in 4:1 EtOH/MeOH becomes structured and is quantitatively similar to that measured for 3 under the same conditions. Because the 77 K spectra are nearly identical, the emissions are assigned as (3)tda in nature, implying that the charge-transfer states are raised in energy, relative to the (3)tda levels in 1 in the low-temperature glass. Nanosecond transient absorption spectrometry and ultrafast difference spectra were determined for 1-3 in CH(2)Cl(2) and DMF at ambient temperature. In 1 and 2, the major absorption transients are consistent with the one-electron reduced complexes, corroborated by reductive spectroelectrochemical measurements performed at room temperature. As 3 does not possess any charge-transfer character, excitation into the pipi* transitions of the tda ligand generated transient absorptions in the relaxed excited state assigned to the ligand-localized triplet state. In all three cases, the excited-state lifetimes measured by transient absorption are similar to those measured by time-resolved photoluminescence, suggesting that the same excited states giving rise to the photoluminescence are responsible for the absorption transients. ESR spectroscopy of the anions 1- and 2- and reductive spectroelectrochemistry of 1 and 2 revealed a LUMO based largely on the pi* orbital of the dbbpy ligand. Time-dependent density functional theory calculations performed on 1-3 both in vacuum and in a CH(2)Cl(2) continuum revealed the molecular orbitals, energies, dipole moments, and oscillator strengths for the various electronic transitions in these molecules. A DeltaSCF-method-derived shift applied to the calculated transition energies in the solvent continuum yielded good agreement between theory and experiment for each molecule in this study.  相似文献   

18.
The laser induced fluorescence excitation and dispersed fluorescence spectra of three nitrogen heterocyclic molecules 1-methyl-2(1H)pyridone (1MPY), 1-methyl-2(1H)pyridinimine (1MPI), and 3-methyl-2(1H)pyridone (3MPY) have been studied under supersonic jet cooled condition. The methyl torsional and some low frequency vibrational transitions in the fluorescence excitation spectrum were assigned for 1MPY. These new assignments modify the potential parameters to the methyl torsion reported earlier. Some striking similarities exist between the torsional and vibrational transitions in the fluorescence excitation spectra of 1MPY and 1MPI. Apart from pure torsional transitions, a progression of vibration-torsion combination bands was observed for both these molecules. The excitation spectrum of 3MPY resembles the spectrum of its parent molecule, 2-pyridone. The barrier height of the methyl torsion in the excited state of 3MPY is highest amongst all these molecules, whereas the barrier in 1MPI is higher than that of 1MPY. To get an insight into the methyl torsional barrier for these molecules, results of the ab initio calculations were compared with the experimental results. It was found that the conformation of the methyl group undergoes a 60 degrees rotation in the excited state in all these molecules with respect to their ground state conformation. This phase shift of the excited state potential is attributed to the pi*-sigma* hyperconjugation between the out-of-plane hydrogen of the methyl group and the molecular frame. It has been inferred that the change in lowest unoccupied molecular orbital energy plays the dominant role in the excited state barrier formation.  相似文献   

19.
Room temperature phosphorescence has been observed in a synthetically facile Pt(II) complex, Pt(dbbpy)(CtriplebondC-pyrene)(2) (dbbpy = 4,4'-di(tert-butyl)-2,2'-bipyridine; CtriplebondC-pyrene = 1-ethynylpyrene), in fluid solution. The static and time-resolved absorption and luminescence data are consistent with phosphorescence emerging from the appended CtriplebondC-pyrenyl units following excitation into the low energy dpi Pt --> pi* dbbpy metal-to-ligand charge transfer absorption bands.  相似文献   

20.
The UV absorption of aqueous Cu+ and Ag+ has been studied using Time Dependent Density Functional Theory (TDDFT) response techniques. The TDDFT electronic spectrum was computed from finite temperature dynamical trajectories in solution generated using the Density Functional Theory (DFT) based Ab Initio Molecular Dynamics (AIMD) method. The absorption of the two ions is shown to arise from similar excitation mechanisms, namely transitions from d orbitals localized on the metal center to a rather delocalized state originating from hybridization of the metal s orbital to the conduction band edge of the solvent. The ions differ in the way the spectral profile builds up as a consequence of solvent thermal motion. The Cu+ absorption is widely modulated, both in transition energies and intensities by fluctuations in the coordination environment which is characterized by the formation of strong coordination bonds to two water molecules in an approximately linear geometry. Though, on average, absorption intensities are typical of symmetry forbidden transitions of metal ions in the solid state, occasionally very short (<100 fs) bursts in intensity are observed, associated with anomalous Cu-H interactions. Absorption by the Ag+ complex is in comparison relatively stable in time, and can be interpreted in terms of the energy splitting of the metal 4d manifold in an average crystal field corresponding to a fourfold coordination in a distorted tetrahedral arrangement. Whereas the spectral profile of the Ag+ aqua ion is in good agreement with experiment, the overall position of the band is underestimated by 2 eV in the BLYP approximation to DFT. The discrepancy with experiment is reduced to 1.3 eV when a hybrid functional (PBE0) is used. The remaining inaccuracy of TDDFT in this situation is related to the delocalized character of the target state in d-->s transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号