首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
建立了一种现场压电传感-红外反射光谱-电化学三维联用技术,并应用该技术现场监测了聚邻氨基苯酚在金电极上的沉积过程,研究了邻氨基苯酚的电氧化和电聚合性质以及聚邻氨基苯酚聚合膜在酸性介质中的电化学性质,同步获取并讨论了聚合膜质量、离子掺杂行为和聚合膜的化学结构变化等信息。结果表明,该技术有望广泛用于多种电极表面过程研究。  相似文献   

2.
薄层光谱电化学法邻联甲苯胺电子转移反应的热力学研究   总被引:2,自引:0,他引:2  
李关宾  实光昕 《分析化学》1990,18(11):1006-1010
  相似文献   

3.
在玻碳基底上沉积Pt和Pd,在以CO和SCN-为探针分子的电化学现场FTIR反射光谱研究中,首次观察到异常红外光学行为,其中包括吸附物种的谱带方向倒反以及谱峰强度显著增强等.  相似文献   

4.
本文阐述了一种新的光谱电化学技术——现场显微红外光谱电化学法的反射式方法的技术特点和优势,报告了一种适于水溶剂和非水溶剂的反射式现场显微红外光谱电化学池的设计,并首次在25um直径的超微铂盘工作电极上,对Fe(CN)_6~(4-)/FE(CN)_6~(3-)进行了现场显微红外光谱电化学的测量。  相似文献   

5.
陈昌国  黄宗卿 《分析化学》1993,21(9):1037-1039
用双电位阶跃计时电流法,动电位扫描等电化学技术和红外光谱法系统测定了现场红外镜反射式电解池中的薄层厚度,电化学特性和光谱特性。结果表明,红外光谱电化学研究中的电解池存在定量的薄层电解效应。  相似文献   

6.
红外光谱电化学   总被引:2,自引:0,他引:2  
光谱电化学是目前电化学中最活跃的研究领域之一。它具有电化学技术易于控制表面性质、反应能量的优点,又具有光谱易于从微观角度观察电极-溶液界面上有关结构和键合的性质。当前应用的原位法(定位法,In Situ)是在保持研究体系原有环境的基础上从分子级  相似文献   

7.
现场光谱电化学研究的新进展   总被引:3,自引:1,他引:3  
电化学以两个凝聚相的荷电界面为其主要研究对象.它广泛地应用于能源、材料等重要科学领域,并对生命科学的发展发挥着重要作用[1,2].为了从分子水平上深化对电化学界面的认识,自七十年代中至八十年代初采用了紫外可见反射、拉曼和红外光谱技术对电化学体系进行现场(in-situ,又称原位)研究,开创了光谱电化学新领域[3,4].光谱电化学在/\十年代发展迅速,推动电化学研究由宏观进入微观、由统计平均深入至分子水平【‘一刀.近年来,随着各种光谱仪器性能的提高以及非线性光谱等新技术的发展,现场光谱电化学研究不断拓宽新领域,…  相似文献   

8.
林祥钦  章宏强 《分析化学》1993,21(11):1355-1358
本文阐述了一种新的光谱电化学技术-现场显微红外光谱电化学法的反射式方法的技术特点和优势,报告了一种适于水溶剂和非水溶剂的反射式现场显微红外光谱电化学池的设计,并首次在25um直径的超微铂盘工作电极上,对Fe(CN)^4-6/FE(CN)^3-6进行了现场显微红外光谱电化学的测量。  相似文献   

9.
设计出适用于亚硫酰氯(SOCl2)电化学还原现场红外测试的电解池。采用具有时间分辨的电化学现场FT-IR差谱法研究SOCl2在铂电极上电化学还原过程,检测出SO2Cl2,SO.SOCl2,(SO2)x,Cl3Al(←OSCl2)等中间物种。结果表明这些物种是不稳定的。SO2Cl2进一步电还原是全过程的速度控制步骤。根据实验结果讨论了可能的反应步骤。  相似文献   

10.
用自行设计的反射光谱薄层电解池测定了二茂铁在NaClO_1/CH_3CN中的E~O′和n值、铁氰化钾在KCl底液中和亚甲蓝在KNO_3/DMSO中的扩散系数。对亚甲蓝在二甲亚砜介质中的还原过程进行了研究,证明有一电子还原产物存在。  相似文献   

11.
武烈  孙建龙  姜秀娥 《电化学》2019,25(2):202-222
表面增强红外吸收光谱(尤其衰减全反射表面增强红外吸收光谱)是一种超灵敏的红外光谱技术,能够实现亚单层膜水平的表面选择性探测. 由于增强基底可同时作为工作电极实现电化学调制,衰减全反射表面增强红外吸收光谱是一种表面敏感的原位免标记光谱电化学技术. 本文首先简要介绍了表面增强红外吸收光谱的基本原理和技术特点,之后通过代表性研究工作着重介绍近年衰减全反射表面增强红外吸收光谱电化学的应用和发展,最后展望了表面增强红外光谱所面临的挑战和潜在的研究方向.  相似文献   

12.
维生素K3电化学反应机理的红外光谱电化学研究   总被引:2,自引:0,他引:2  
用循环信安法及现场红外光谱电化学法研究了维生素K3在铂电极上,弱碱性水溶液介质中的电化学反应机理。循环伏安法实验结果显示VK3的电反应为两步电子准可逆电极过程,现场光谱电化学实验结果则从基团特征吸收频率的变化表明了VK3的电化学还原和氧化经历了从萘醌到萘酚的互变过程。据此进一步证实了VK3由萘醌到酚的电化学反应机理。  相似文献   

13.
徐文茹  张雷 《分析测试学报》2014,33(12):1334-1341
运用循环伏安法(CV)和原位紫外-可见光谱电化学法分别研究了邻氨基酚(OAP)和邻苯二胺(OPD)在1 mol/L HCl溶液中单独聚合及二者共聚的电化学过程。OAP和OPD单独聚合及二者共聚时呈现出的不同电化学行为表明OAP和OPD发生了共聚反应。原位紫外-可见光谱研究表明,在共聚过程中,OAP和OPD首先分别被氧化生成其相应的阳离子自由基,然后,OAP和OPD的阳离子自由基与溶液中的OPD和OAP单体或其阳离子自由基发生交互反应生成类苯胺和类吩嗪结构的二聚物/低聚物中间体,生成的中间体继续发生耦合反应生成OAP和OPD的共聚物,呈现出两个波长分别位于477 nm和419 nm处的吸收峰。并用傅立叶变换红外光谱(FT-IR)表征了共聚物的生成。进一步研究发现,OAP和OPD的共聚过程与溶液中OAP和OPD单体的浓度比有关。  相似文献   

14.
运用循环伏安法(CV)和原位紫外-可见光谱电化学法研究了二苯胺(DPA)和邻氨基酚(OAP)在4mol/L H2SO4中单独聚合及二者共聚的电化学过程。DPA和OAP单独聚合及二者共聚时不同的电化学行为表明DPA和OAP之间发生了共聚作用。原位紫外-可见光谱研究表明,在DPA与OAP的共聚过程中,DPA与OAP首先被氧化生成阳离子自由基,然后,两者的阳离子自由基与溶液中的DPA和OAP单体或其自由基发生交互反应产生混合二聚物中间体,其吸收峰位于508 nm处。进一步研究发现,DPA和OAP的共聚过程与溶液中各单体的浓度比有关。  相似文献   

15.
应用电化学循环伏安法(CV)和现场红外光谱(FTIR),研究了酸性溶液中钯催化甲醇、乙二醇电氧化的过程.结果表明:在酸性和中性介质中,甲醇和乙二醇在多晶Pd电极上氧化须在1.5V以上才能发生.随着溶液pH值的降低,过电位减小且峰电流密度上升.溶液的pH值以及电极表面形成的吸附含氧物种对Pd电催化氧化醇有显著的影响.现场红外光谱电化学测试显示,在高电位和强酸性介质中,乙二醇在Pd电极上的氧化产物主要是CO2和少量的乙二酸.在酸性和中性介质中,无论在低电位或高电位,甲醇和乙二醇在Pd上氧化的主要产物是CO2,没有发现CO的存在,说明该氧化过程CO2是经过非毒化的路径产生的.  相似文献   

16.
采用电化学及红外伏吸法研究了抗坏血酸(AA)在水溶液和离子液体1-乙基-3-甲基咪唑(EMIMBF4)中的电化学行为.AA在EMIMBF4中与在水溶液中一样,不可逆氧化成脱氢抗坏血酸(DHAA).现场红外光谱结果表明,DHAA在水中迅速发生水解反应,而在EMIMBF4中则较稳定.在EMIMBF4中,AA的羰基峰出现在1739 cm-1处,DHAA的羰基峰出现在1785 cm-1处,它们相比于游离态的羰基发生了红移.原因可能是AA和DHAA与EMIMBF4间易形成氢键,或者是AA自身形成了氢键,DHAA以二聚体的形态存在.  相似文献   

17.
郭黎平  林祥钦 《分析化学》1999,27(2):135-139
用现场显微红外光谱电化学方法研究了几种电活性物质,包括无机盐、有机物、无机聚合物微粒在聚电解质中的氧化还原反应及其机理。  相似文献   

18.
采用循环伏安法研究了邻碘苯甲酸在NaOH溶液中的电化学还原反应,与Pt和Ti等电极相比,Ag和Cu电极对邻碘苯甲酸具有较好的电还原活性,还原电位向正电位方向移动.通过原位红外光谱技术研究了邻碘苯甲酸在Ag和Cu电极上的电还原机理.结果表明,在电位高于-800 mV时,邻碘苯甲酸在Ag电极表面先形成吸附中间态R…I…Ag,而在Cu电极表面以负离子形式存在.随着电位的进一步负移,邻碘苯甲酸在Ag和Cu电极上均发生脱碘加氢反应,经还原得到最终产物苯甲酸.  相似文献   

19.
傅东祺  金葆康 《无机化学学报》2010,26(11):2001-2005
本文利用红外光谱电化学循环伏吸法,对碱性体系下甲醇在Pt电极上的氧化过程的中间产物进行分析和研究。结果表明,碱性体系中,CH3OH在Pt电极上具有较好的电化学活性,存在和在酸性体系中不同的反应机理。利用现场红外差谱对氧化过程的产物进行分析,对生成的产物进行指认,并未发现毒化中间产物COL的生成。运用红外光谱电化学循环伏吸及导数伏吸法,对生成的中间体的生成过程进行分析和指认,结果表明:CH3OH的氧化中间产物为HCOO-,在碱性体系下,会继续转化为CO2,CO32-和HCO3-。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号