首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
The reactions between edaravone and various one-electron oxidants such as (*)OH, N(3)(*), Br(2)(-), and SO(4)(-), have been studied by pulse radiolysis techniques. The transient species produced by the reaction of edaravone with (*)OH radical shows an absorption band with lambda(max)=320 nm, while the oxidation by N(3)(*), Br(2)(-), SO(4)(-) and CCl(3)OO(*) results in an absorption band with lambda(max)=345 nm. Different from the previous reports, the main transient species by the reaction of edaravone with (*)OH radical in the absence of O(2) is attributed to OH-adducts. At neutral condition (pH 7), the rate constants of edaravone reacting with (*)OH, N(3)(*), SO(4)(-), CCl(3)OO(*), and e(aq)(-) are estimated to be 8.5x10(9), 5.8x10(9), 6x10(8), 5.0x10(8) and 2.4x10(9)dm(3)mol(-1)s(-1), respectively. From the pH dependence on the formation of electron adducts and on the rate constant of edaravone with hydrated electron, the pK(a) of edaravone is estimated to be 6.9+/-0.1.  相似文献   

2.
We report experimental evidence for the formation of C(5)-hydroperoxyaldehydes (HPALDs) from 1,6-H-shift isomerizations in peroxy radicals formed from the hydroxyl radical (OH) oxidation of 2-methyl-1,3-butadiene (isoprene). At 295 K, the isomerization rate of isoprene peroxy radicals (ISO2?) relative to the rate of reaction of ISO2? + HO2 is k(isom)(295)/(k(ISO2?+HO2)(295)) = (1.2 ± 0.6) x 10(8) mol cm(-3), or k(isom)(295) ? 0.002 s(-1). The temperature dependence of this rate was determined through experiments conducted at 295, 310 and 318 K and is well described by k(isom)(T)/(k(ISO2?+HO2)(T)) = 2.0 x 10(21) exp(-9000/T) mol cm(-3). The overall uncertainty in the isomerization rate (relative to k(ISO2?+HO2)) is estimated to be 50%. Peroxy radicals from the oxidation of the fully deuterated isoprene analog isomerize at a rate ~15 times slower than non-deuterated isoprene. The fraction of isoprene peroxy radicals reacting by 1,6-H-shift isomerization is estimated to be 8-11% globally, with values up to 20% in tropical regions.  相似文献   

3.
The mechanism by which a benzotriazine 1,4-dioxide class of anticancer drugs produce oxidizing radicals following their one-electron reduction has been investigated using tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide, 1) and its 6-methoxy (6), 7-dimethylamino (7), and 8-methyl (8) analogues. By measuring the changes in absorption with pH, we found that the radical anions undergo protonation with radical pK(r) values of 6.19 +/- 0.05, 6.10 +/- 0.03, 6.45 +/- 0.04, and 6.60 +/- 0.04, respectively. The one-electron reduced species underwent a first-order reaction, with increased rate constants from 112 +/- 23 s(-)(1) for 1 to 777 +/- 12 s(-)(1)(6), 1120 +/- 29 s(-)(1) (7), and 825 +/- 89 s(-)(1) (8) at pH 7. No overall change in conductance was observed following the one-electron reduction of 6, and 8 at pH 4.5, consistent with the protonation of the radical anions, but a loss in conductance was seen for one-electron reduced 7 because of further protonation of the initially formed radical. This is assigned to the protonation of the dimethylamino group of the radical species, which has a pK(a) of 8.8 +/- 0.3. All conductance changes take place on a time-scale shorter than those of the above first-order reactions, which are not associated with the formation or loss of charged species. The absorption spectra present at the end of the unimolecular reactions were found to be similar to those formed immediately upon the one-electron oxidation of the respective substituted 3-amino-1,2,4-benzotriazine 1-oxides, and it is suggested that common benzotriazinyl radicals are formed by both routes. All these intermediate radicals underwent dismutation to produce final spectra matched by equal contributions of the parent compound and their respective substituted 3-amino-1,2,4-benzotriazine 1-oxides. By establishing redox equilibria between the intermediate radicals formed on the one-electron oxidation of the respective 3-amino-1,2,4-benzotriazine 1-oxides of the compounds and reference compounds, we found the one-electron reduction potential of the oxidizing radicals to range from 0.94 to 1.31 V. The benzotriazinyl radical of tirapazamine was found to oxidize dGMP and 2-deoxyribose with rate constants of (1.4 +/- 0.2) x 10(8) M(-)(1) s(-)(1) and (3.7 +/- 0.5) x 10(6) M(-)(1) s(-)(1), respectively.  相似文献   

4.
The intramolecular reaction of cysteine thiyl radicals with peptide and protein alphaC-H bonds represents a potential mechanism for irreversible protein oxidation. Here, we have measured absolute rate constants for these reversible hydrogen transfer reactions by means of pulse radiolysis and laser flash photolysis of model peptides. For N-Ac-CysGly6 and N-Ac-CysGly2AspGly3, Cys thiyl radicals abstract hydrogen atoms from Gly with k(f) = (1.0-1.1 x 10(5) s(-1), generating carbon-centered radicals, while the reverse reaction proceeds with k(r) = (8.0-8.9) x 10(5) s(-1). The forward reaction shows a normal kinetic isotope effect of k(H)/k(D) = 6.9, while the reverse reaction shows a significantly higher normal kinetic isotope effect of 17.6, suggesting a contribution of tunneling. For N-Ac-CysAla2AspAla3, cysteine thiyl radicals abstract hydrogen atoms from Ala with k(f) = (0.9-1.0) x 10(4) s(-1), while the reverse reaction proceeds with k(r) = 1.0 x 10(5) s(-1). The order of reactivity, Gly > Ala, is in accord with previous studies on intermolecular reactions of thiyl radicals with these amino acids. The fact that k(f) < k(r) suggests some secondary structure of the model peptides, which prevents the adoption of extended conformations, for which calculations of homolytic bond dissociation energies would have predicted k(f) > k(r). Despite k(f) < k(r), model calculations show that intramolecular hydrogen abstraction by Cys thiyl radicals can lead to significant oxidation of other amino acids in the presence of physiologic oxygen concentrations.  相似文献   

5.
The antioxidant effects of the new thiosulfinate derivative, S-benzyl phenylmethanethiosulfinate (BPT), against the oxidation of cumene and methyl linoleate (ML) in chlorobenzene were studied in detail using HPLC. The results showed that BPT provided effective inhibition with a well-defined induction period under these oxidation conditions, and it was found that the stoichiometric factor (n), the number of peroxyl radicals trapped by one antioxidant molecule, of BPT is about 2. We then undertook a thorough investigation aimed at elucidating the active structural site of BPT. Various model compounds, such as diphenyl disulfide, dibenzyl disulfide, S-phenyl benzenethiosulfinate and S-ethyl phenylmethanethiosulfinate, were used which provided evidence that the benzylic hydrogen of BPT is mainly associated with the peroxyl radical scavenging. Moreover, we measured the rate constant for the reaction of BPT with peroxyl radicals derived from cumene and ML in chlorobenzene, and based on these measurements, BPT reacts with these peroxyl radicals with a rate constant of k(inh) = 8.6 x 10(3) and 6.2 x 10(4) M(-1) s(-1), respectively.  相似文献   

6.
Reactions of alpha-hydroxyalkyl radicals with 3,5-pyridinedicarboxylic acid (3,5-PDCA) and nicotinic acid (NA) were studied at appropriate pHs in aqueous solutions by pulse radiolysis technique. At pH 1, CH(3)C*HOH and *CH(2)OH radicals were found to react with 3,5-PDCA by rate constants of 2.2 x 10(9) and 5.1 x 10(8) dm(3) mol(-1) s(-1), respectively, giving radical adduct species. The adduct species formed in the reaction of CH(3)C*HOH radicals with 3,5-PDCA underwent unimolecular decay (k = 9.8 x 10(4) s(-1)) giving pyridinyl radicals. Reaction of (CH(3))(2)C*OH, CH(3)C*HOH, and *CH(2)OH radicals with NA at pH 3.3 gave the adduct species which subsequently decayed to the pyridinyl radicals. At pH 1, wherein NA is present in the protonated form, (CH(3))(2)C*OH radicals directly transfer electrons to NA, whereas CH(3)C*HOH and *CH(2)OH radicals react with higher rate constants compared with those at pH 3.3, initially giving the adduct species which subsequently undergo elimination reaction giving pyridinyl radicals. Reactions of alpha-hydroxyalkyl radicals with 3,5-pyridinedicarboxylic acid and nicotinic acid are found to proceed by an addition-elimination pathway that provides one of the few examples of organic inner sphere electron-transfer reactions. Rate constant for the addition reaction as well as rate of elimination varies with the reduction potential of alpha-hydroxyalkyl radicals.  相似文献   

7.
The reactions of melatonin (MLT) with hydroxyl and several peroxyl radicals have been studied using the Density Functional Theory, specifically the M05-2X functional. Five mechanisms of reaction have been considered: radical adduct formation (RAF), Hydrogen atom transfer (HAT), single electron transfer (SET), sequential electron proton transfer (SEPT) and proton coupled electron transfer (PCET). It has been found that MLT reacts with OH radicals in a diffusion-limited way, regardless of the polarity of the environment, which indicates that MLT is an excellent OH radical scavenger. The calculated values of the overall rate coefficient of MLT + ˙OH reaction in benzene and water solutions are 2.23 × 10(10) and 1.85 × 10(10) M(-1) s(-1), respectively. MLT is also predicted to be a very good ˙OOCCl(3) scavenger but rather ineffective for scavenging less reactive peroxyl radicals, such as alkenyl peroxyl radicals and ˙OOH. Therefore it is concluded that the protective effect of MLT against lipid peroxidation does not take place by directly trapping peroxyl radicals, but rather by scavenging more reactive species, such as ˙OH, which can initiate the degradation process. Branching ratios for the different channels of reaction are reported for the first time. In aqueous solutions SEPT was found to be the main mechanism for the MLT + ˙OH reaction, accounting for about 44.1% of the overall reactivity of MLT towards this radical. The good agreement between the calculated and the available experimental data, on the studied processes, supports the reliability of the results presented in this work.  相似文献   

8.
Free radical species are generally short-lived due to their high reactivity and thus direct measurement and identification are often impossible. In this study we used a spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), to trap radical intermediates formed during the oxidation of isomeric dipeptides tyrosine-leucine (Tyr-Leu) and leucine-tyrosine (Leu-Tyr), induced by the hydroxyl radical. To investigate the influence of the amino acid position in the peptide chain on the oxidation and free radical generation, the spin adducts were characterized using LC-MS and MS(n) . We detected carbon and oxygen DMPO adducts and adducts bearing two DMPO, which were analyzed by MS(n) . Both alkoxyl and peroxyl radicals were identified. Radical intermediates were localized in Tyr during oxidation of Tyr-Leu, while radicals were identified in Leu and Tyr during oxidation of Leu-Tyr. DMPO adducts of acyl radical species formed from cleavage of the peptide backbone, promoted by the alkoxyl radical in α carbon of the N-terminal amino acid were observed. The results show that the amino acid position has an influence in the oxidation process, at least on small peptides, and that the α carbon of the N-terminal amino acid is more vulnerable to the attack of the electrophilic hydroxyl radical.  相似文献   

9.
Benzoyl and ferrocenoyl 3,4-dihydropyrimidin-2(1H)-ones (-thiones) (DHPMs) were synthesized in modest yields via catalyst-free and solvent-free Biginelli condensation of 1-phenylbutane-1,3-dione or 1-ferrocenylbutane-1,3-dione, hydroxyl benzaldehyde, and urea or thiourea. This synthetic protocol revealed that catalysts may not be necessary for the self-assembling Biginelli reaction. The radical-scavenging abilities of the obtained 11 DHPMs were carried out by reacting with 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS(+?)), galvinoxyl radical, and 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH), respectively. The variation of the concentration of these radicals with the reaction time (t) followed exponential function, [radical] = Ae(-t/a) + Be(-t/b) + C. Then, the differential style of this equation led to the relationship between the reaction rate (r) and the reaction time (t), -d[radical]/dt = (A/a)e(-t/a) + (B/b)e(-t/b), which can be used to calculate the reaction rate at any time point. On the basis of the concept of the reaction rate, r = k[radical][antioxidant], the rate constant (k) can be calculated with the time point being t = 0. By the comparison of k of DHPMs, it can be concluded that phenolic ortho-dihydroxyl groups markedly enhanced the abilities of DHPMs to quench ABTS(+?), but the introduction of ferrocenoyl group made DHPMs efficient ABTS(+?) scavengers even in the absence of phenolic hydroxyl group. This phenomenon was also found in DHPM-scavenging galvinoxyl radical. In contrast, the ferrocenoyl group cannot enhance the abilities of DHPMs to scavenge DPPH, and phenolic ortho-dihydroxyl groups still played the key role in this case.  相似文献   

10.
Reactions of hydroxyl radicals (*OH) with selenocystine (SeCys) and two of its analogues, diselenodipropionic acid (SeP) and selenocystamine (SeA), have been studied in aqueous solutions at pHs of 1, 7, and 10 using the pulse radiolysis technique coupled with absorption detection. All of these diselenides react with *OH radicals with rate constants of approximately 10(10) M(-1) s(-1), producing diselenide radical cations ( approximately 1-5 micros after the pulse), with an absorption maximum at 560 nm, by elimination of H(2)O or OH(-) from hydroxyl radical adducts. Assignment of the 560 nm band to the diselenide radical cation was made by comparing the transient spectra with those produced upon reaction of diselenides with specific one-electron oxidants, Cl(2)(*-) (pH 1) and Br(2)(*-) radicals (pHs of 7 and 10). SeP having a carboxylic acid functionality showed quantitative conversion of hydroxyl radical adducts to radical cations. The compounds SeCys and SeA, having an amino functional group, in addition to the radical cations, produced a new transient with lambda(max) at 460 nm, at later time scales ( approximately 20-40 micros after the pulse). The rate and yield of formation of the 460 nm band increased with increasing concentrations of either SeCys or SeA. In analogy with similar studies reported for analogous disulfides, the 460 nm transient absorption band has been assigned to a triselenide radical adduct. The one-electron reduction potentials of the compounds were estimated to be 0.96, 1.3, and 1.6 V versus NHE, respectively, for SeP, SeCys, and SeA at pH 7. From these studies, it has been concluded that the electron-donating carboxylic acid group decreases the reduction potential and facilitates quantitative conversion of hydroxyl radical adducts to radical cations, while the electron-withdrawing NH(3)(+) group not only increases the reduction potential but also leads to fragmentation of the hydroxyl radical adduct to selenyl radicals, which are converted to triselenide radical adducts.  相似文献   

11.
A method was developed to treat the result from an antioxidant trapping radicals including 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) cationic radical(ABTS+·), 2,2'-diphenyl-1-picrylhydrazyl radical(DPPH), and galvinoxyl radical. In the presence of a certain concentration of an antioxidant, the decrease of the concentration of a kind of radicals follows the second order exponential function with the increase of the reaction time(t), viz.,[radical]=Ae-t/a+Be-t/b+C, the derivation operation of which obtains the differential style, -d[radical]/dt= (A/a)e-t/a+(B/b)e-t/b, revealing the relationship between the reaction rate(r=-d[radical]/dt) and the reaction time(t). Thus, the reaction rate at the beginning of the reaction(r0) can be calculated by assigning t=0 in the equation of -d[radical]/dt-t. Based on the concept of the reaction rate, r=k[radical][antioxidant], the rate constant(k) can be calculated based on r0 and the initial concentrations of radical and antioxidant, k=r0/([radical]0[antioxidant]0). The k means the rate of a fresh antioxidant molecule to trap a fresh radical. This method was used to treat the interactions of ABTS+·, DPPH, and galvinoxyl radicals with three homoisoflavonoids, four pyrazoles, and three ferrocenyl Schiff bases. It was found that ferrocenyl group is beneficial for antioxidants to reduce ABTS, and ortho-hydroxyl group is beneficial for antioxidants to donate hydrogen atom in phenolic hydroxyl group to DPPH and galvinoxyl radicals.  相似文献   

12.
Hydroxyl radicals, generated by ionizing radiation in N2O saturated aqueous solutions, abstract H atoms from poly(methacrylic acid) at the methyl and methylene groups, and radicals 1 and 2 are formed, respectively. The reactions of the poly(methacrylic acid) radicals were investigated by pulse radiolysis (using optical and conductometric detection), EPR, product analysis, and kinetic simulations. The conductometric detection allowed us to measure the rate of chain scission and monomer release. Under conditions in which the polymer is largely deprotonated, the primary radical 1 abstracts a hydrogen (k= 3.5 x 10(2)s(-1)) from the methylene group, and this yields the more stable secondary radical 2. This radical undergoes chain scission by beta-fragmentation (k= 1.8 s(-1)), and the terminal (end-of-chain) radical 3 is formed. The polymer radicals terminate only slowly (2k= 80 dm3mol(-1)s(-1)). This allows effective depolymerization (depropagation) to take place (k=0.1 s(-1)). The yield of monomer release is higher than the original radical yield by up to two orders of magnitude. Once monomer is formed, it reacts with 3 (propagation, k= 15 dm3mol(-1)s(-1)), and a situation close to an equilibrium radical polymerization is approached. From these data, the equilibrium monomer concentration is calculated at 6.7 x 10(-3) mol dm(-3) at room temperature. The standard entropy of propagation is estimated at -185 to -150 J mol(-1)K(-1). Because the monomer reaches concentrations in the millimolar range, the *OH radicals increasingly react with monomers (results in oligomerization) rather than with the polymer. This effect is reflected by, for example, a lowering of chain-scission yields upon prolonged irradiation. In acid solutions, the decay of the polymer radicals becomes much faster (estimated at about 10(7)dm3mol(-1)s(-1) at pH3.5), and monomer release is no longer observed.  相似文献   

13.
The antitumor drug bleomycin (BLM) is proposed to act via a low-spin iron(III) hydroperoxide intermediate called "activated bleomycin". To gain more insight into the mechanistic aspects of catalytic oxidation by these intermediates we have studied the reactivity of [(N4Py)Fe(CH3CN)](ClO4)2 (1) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) with excess H2O2. Under these conditions a transient purple species is generated, [(N4Py)FeOOH]2- (2), which has spectroscopic features and reactivity strongly reminiscent of activated bleomycin. The catalytic oxidation of alkanes such as cyclohexane, cyclooctane, and adamantane by 1 with H2O2 gave the corresponding alcohols and ketones in up to 31% yield. It was concluded, from the O2 sensitivity of the oxidation reactions, the formation of brominated products in the presence of methylene bromide, and the nonstereospecificity of the oxidation of cis- or trans-dimethylcyclohexane, that long-lived alkyl radicals were formed during the oxidations. Oxidation of alkenes did not afford the corresponding epoxides in good yields but resulted instead in allylic oxidation products in the case of cyclohexene, and cleavage of the double bond in the case of styrene. Addition of hydroxyl radical traps, such as benzene and acetone, led to only partial quenching of the reactivity. The kinetic isotope effects for cyclohexanol formation, ranging from 1.5 in acetonitrile to 2.7 in acetone with slow addition of H2O2, suggested the involvement of a more selective oxidizing species in addition to hydroxyl radicals. Monitoring the UV/Vis absorption of 2 during the catalytic reaction showed that 2 was the precursor for the active species. On the basis of these results it is proposed that 2 reacts through homolysis of the O-O bond to afford two reactive radical species: [(N4Py)Fe(IV)O]2+ and *OH. The comparable reactivity of 1 and Fe-BLM raises the possibility that they react through similar mechanistic pathways.  相似文献   

14.
The pharmacological effects of hydroxamate derivatives have been attributed not only to metal chelation or enzyme inhibition but also to their ability to serve as nitroxyl (HNO/NO(-)) and nitric oxide (NO) donors. However, the mechanism underlying the formation of these reactive nitrogen species is not clear and requires further elucidation. In the present study, one-electron oxidation of acetohydroxamic acid (aceto-HX) by (?)OH, (?)N(3), (?)NO(2), CO(3)(?-), and O(2)(?-) radicals was investigated using pulse radiolysis. It is demonstrated that only (?)OH, (?)N(3), and CO(3)(?-) radicals attack effectively and selectively the deprotonated form of the hydroxamate moiety, yielding the respective transient nitroxide radical. This nitroxide radical is a weak acid (CH(3)C(O)NHO(?), pK(a) = 9.1), which decays via a pH-dependent second-order reaction, 2k(2CH(3)C(O)NO(?-)) = (5.6 ± 0.4) × 10(7) M(-1) s(-1) (I = 0.002 M), 2k(CH(3)C(O)NO(?-) + CH(3)C(O)NHO(?)) = (8.3 ± 0.5) × 10(8) M(-1) s(-1)), and 2k(2CH(3)C(O)NHO(?)) = (8.7 ± 1.3) × 10(7) M(-1) s(-1). The second-order decomposition of the nitroxide yields transient species, one of which decomposes via a first-order reaction whose rate increases linearly upon increasing [CH(3)C(O)NHO(-)] or [OH(-)]. One-electron oxidation of aceto-HX under anoxia does not give rise to nitrite even after exposure to O(2), indicating that NO is not formed during the decomposition of the nitroxide radical. The presence of oxidants such as Tempol or O(2) during CH(3)C(O)NO(?-) decomposition had no effect on the reaction kinetics. Nevertheless, in the presence of Temopl, which does not react with NO but does with HNO, the formation of the hydroxylamine Tempol-H was observed. In the presence of O(2), about 60% of CH(3)C(O)NO(?-) yields ONOO(-), indicating that 30% NO(-) is formed in this system. It is concluded that under pulse radiolysis conditions, the transient nitroxide radicals derived from one-electron oxidation of aceto-HX decompose bimoleculary via a complex mechanism forming nitroxyl rather than NO.  相似文献   

15.
The OH-initiated oxidation of acetone in aqueous solution is investigated because of its potential implications in atmospheric chemistry. The UV-spectrum of the transient acetonylperoxy radical was measured. Two characteristic absorption bands of the acetonylperoxy radical spectrum are found in the 220-400 nm wavelength region. The rate constant for the recombination reaction of the acetonylperoxy radical was determined as a function of temperature for the first time in aqueous solution with k(rec,298?K) = (7.3 ± 1.3) × 10(8) M(-1) s(-1), E(A) = 4.5 ± 3.3 kJ mol(-1), and A = (4.7 ± 2.7) × 10(9) M(-1) s(-1). Furthermore, kinetic investigations of the OH-initiated oxidation of methylglyoxal and pyruvic acid were performed with the following results: for methylglyoxal, k(second) = (6.2 ± 0.2) × 10(8) M(-1) s(-1), E(A) = 12 ± 2 kJ mol(-1), and A = (7.8 ± 0.2) × 10(9) M(-1) s(-1); for pyruvic acid (pH = 0), k(second) = (3.2 ± 0.6) × 10(8) M(-1) s(-1), E(A) = 15 ± 5 kJ mol(-1), and A?= (1.1 ± 0.1) × 10(11) M(-1) s(-1); for pyruvate (pH = 6), k(second) = (7.1 ± 2.4) × 10(8) M(-1) s(-1), E(A) = 25 ± 19 kJ mol(-1), and A = (1.5 ± 0.4) × 10(13) M(-1) s(-1). Quantitative product studies were done as a function of the number of laser photolysis pulses for acetone and its oxidation products methylglyoxal, hydroxyacetone, pyruvic acid, acetic acid, and oxalic acid. After the recombination reaction of acetonylperoxy radicals, there are two possible decomposition reactions where the primary products methylglyoxal and hydroxyacetone are formed. From product analysis after a single photolysis laser shot, the ratio of the main product-forming reactions was determined as (A) 30% and (B) 56% for the methylglyoxal formation via channel A to yield two molecules of methylglyoxal and channel B to yield one molecule of methylglyoxal and one molecule of hydroxyacetone. The remaining product can be ascribed to channel C, the radical-retaining channel forming alkoxy radicals with a yield of 14%. Pyruvic acid and acetic acid were found to be the major intermediates estimated with concentrations in the same order of magnitude and a similar time profile, indicating that acetic acid is also a possible oxidation product of methylglyoxal.  相似文献   

16.
Many pharmaceutical compounds and metabolites are being found in surface and ground waters, indicating their ineffective removal by conventional wastewater treatment technologies. Advanced oxidation/reduction processes (AO/RPs), which utilize free-radical reactions to directly degrade chemical contaminants, are alternatives to traditional water treatment. This study reports the absolute rate constants for reaction of three beta-lactam antibiotics (penicillin G, penicillin V, amoxicillin) and a model compound (+)-6-aminopenicillanic acid with the two major AO/RP reactive species: hydroxyl radical ((*)OH) and hydrated electron (e(-)aq). The bimolecular reaction rate constants (M(-1) s(-1)) for penicillin G, penicillin V, amoxicillin, and (+)-6-aminopenicillanic acid for (*)OH were (7.97 +/- 0.11) x 10(9), (8.76 +/- 0.28) x 10(9), (6.94 +/- 0.44) x 10(9), and (2.40 +/- 0.05) x 10(9) and for e(-)aq were (3.92 +/- 0.10) x 10(9), (5.76 +/- 0.24) x 10(9), (3.47 +/- 0.07) x 10(9), and (3.35 +/- 0.06) x 10(9), respectively. To provide a better understanding of the decomposition of the intermediate radicals produced by hydroxyl radical reactions, transient absorption spectra were observed from 1 to 100 micros. In addition, preliminary degradation mechanisms and major products were elucidated using (137)Cs gamma irradiation and LC-MS. These data are required for both evaluating the potential use of AO/RPs for the destruction of these compounds and studies of their fate and transport in surface waters where radical chemistry may be important in assessing their lifetime.  相似文献   

17.
We report herein a detailed assessment of the roles of O2, H2O2, *OH, and O2-* in the TiO2 assisted photocatalytic oxidation (PCO) of arsenite. Although both arsenite, As(III), and arsenate, As(V), adsorb extensively onto the surface of TiO2, past studies relied primarily on the analysis of the arsenic species in solution, neglecting those adsorbed onto the surface of TiO2. We used extraction and analyses of the arsenic species adsorbed onto the surface of the TiO2 to illustrate that the oxidation of As(III) to As(V) occurs in an adsorbed state during TiO2 PCO. The TiO2 photocatalytic oxidation (PCO) of surface adsorbed As(III) in deoxygenated solutions with electron scavengers, Cu2+, and polyoxometalates (POM) yields oxidation rates that are comparable to those observed under oxygen saturation, implying the primary role of oxygen is as a scavenger of the conduction band electron. Pulse radiolysis and competition kinetics were employed to determine a rate constant of 3.6 x 10(6) M(-1) s(-1) for the reaction of As(III) with O2-*. Transient absorption studies of adsorbed hydroxyl radicals, generated by subjecting colloidal TiO2 to radiolytic conditions, provide convincing evidence that the adsorbed hydroxyl radical (TiO2+*OH) plays the central role in the oxidation with As(III) during TiO2 assisted photocatalysis. Our results suggest the reaction of superoxide anion radical does not contribute in the conversion of As(III) when compared to the reaction of As(III) with *OH radical during TiO2 PCO.  相似文献   

18.
N-[(2-Benzothiazolyl)thio]- (1), N-[(2-benzoxazolyl)thio]- (2), and N-(2-pyrimidylthio)-2,4,6-trisubstituted-phenylaminyls (3) were generated by oxidation of the corresponding amines. Although 2 and 3 were not sufficiently persistent to be isolated, 1 was very persistent and could be isolated as radical crystals. The ESR spectra of nondeuterated and partially deuterated 1-3 radicals were measured, and the spin density distributions were estimated from the hyperfine coupling constants. Ab initio molecular orbital calculations were made for 1 to discuss the spin density distribution in more detail. Single-crystal X-ray crystallographic analysis was performed for one radical. Magnetic properties were measured for isolated four radicals with a SQUID. Two radicals showed ferromagnetic interaction, and analyses of chiT vs T plots with the one-dimensional regular Heisenberg model gave 2J/k(B) = 5.8 and 8.6 K. The remaining two radicals showed antiferromagnetic interaction. Analyses of the chiT vs T plots with the Curie-Weiss law or dimer model gave theta = -1.4 K and 2J/k(B) = -1370 K. The strong antiferromagnetic interaction could be explained in terms of the X-ray crystallographic results.  相似文献   

19.
The heterometallic complex [Co(4)Fe(2)OSae(8)]·4DMF·H(2)O (1) was synthesized by one-pot reaction of cobalt powder with iron chloride in a dimethylformamide solution of salicylidene-2-ethanolamine (H(2)Sae) and characterized by single crystal X-ray diffraction analysis, magnetic measurements, high frequency electron paramagnetic resonance (HF-EPR), and M?ssbauer spectroscopies. The exchange coupling in the Fe(III)-Fe(III) pair is of antiferromagnetic behavior with J/hc = -190 cm(-1). The HF-EPR spectra reveal an unusual pattern with a hardly detectable triplet signal of the Fe(III) dimer. The magnitude of D (ca. 13.9 cm(-1)) was found to be much larger than in related dimers. The catalytic investigations disclosed an outstanding activity of 1 toward oxidation of cycloalkanes with hydrogen peroxide, under mild conditions. The most efficient system showed a turnover number (TON) of 3.57 × 10(3) with the concomitant overall yield of 26% for cyclohexane, and 2.28 × 10(3)/46%, respectively, for cyclooctane. A remarkable turnover frequency (TOF) of 1.12 × 10(4) h(-1) (the highest initial rate W(0) = 3.5 × 10(-4) M s(-1)) was achieved in oxidation of cyclohexane. Kinetic experiments and selectivity parameters led to the conclusion that hydroxyl radicals are active (attacking C-H bonds) species. Kinetic and electrospray ionization mass spectrometry (ESI-MS) data allowed us to assume that the trinuclear heterometallic particle [Co(2)Fe(Sae)(4)](+), originated from 1 in solution, could be responsible for efficient generation of hydroxyl radicals from hydrogen peroxide.  相似文献   

20.
The kinetics of the reactions of hydroxyl radical with n-octane (k1), n-nonane (k2), and n-decane (k3) at 240-340 K and a total pressure of approximately 1 Torr has been studied using relative rate combined with discharge flow and mass spectrometer (RR/DF/MS) technique. The rate constant for these reactions was found to be positively dependent on temperature, with an Arrhenius expression of k1 = (2.27 +/- 0.21) x 10(-11)exp[(-296 +/- 27)/T], k2 = (4.35 +/- 0.49) x 10(-11)exp[(-411 +/- 32)/T], and k3 = (2.26 +/- 0.28) x 10(-11)exp[(-160 +/- 36)/T] cm3 molecule(-1) s(-1) (uncertainties taken as 2sigma), respectively. Our results are in good agreement with previous studies at and above room temperature using different techniques. Assuming that the reaction of alkane with hydroxyl radical is the predominant form for loss of these alkanes in the troposphere, the atmospheric lifetime for n-octane, n-nonane, and n-decane is estimated to be about 43, 35, and 28 h, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号