首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The kinetics of the interaction of glycine-l-leucine (Glyleu) with cis-[Pt(cis-dach)(OH2)2]2+ (dach = 1,2-diaminocyclohexane) has been studied spectrophotometrically as a function of [cis-[Pt(cis-dach)(OH2)2]2+], [Glyleu] and temperature at pH 4.0, where the complex exists predominantly as the diaqua species and Glyleu as a zwitterion. The substitution reaction shows two consecutive steps: the first is the ligand-assisted anation and the second is the chelation step. The activation parameters for both the steps were evaluated using Eyring’s equation. The low ∆H1 (51.9 ± 2.8 kJmol−1) and large negative value of ∆S1 (−152 ± 8 JK−1mol−1) as well as ∆H2 (54.4 ± 1.7 kJmol−1) and ∆S2 (−162 ± 5 JK−1mol−1) indicate an associative mode of activation for both the aqua ligand substitution processes.  相似文献   

2.
The kinetics of the interaction of diethyldithiocarbamate (Et2DTC) with [Pt(dach)(H2O)2]2+ (dach = cis-1,2-diaminocyclohexane) have been studied spectrophotometrically as a function of [Pt(dach)(H2O)2 2+], [Et2DTC] and temperature at a particular pH (4.0). The reaction proceeds via rapid outer sphere association complex formation followed by two slow consecutive steps. The first step involves the transformation of the outer sphere complex into an inner sphere complex containing a Pt–S bond and one aqua ligand, while the second step involves chelation when the second aqua ligand is replaced. The association equilibrium constant K E and two rate constants k 1 and k 2 have been evaluated. Activation parameters for both the steps have been calculated (∆H 1 # = 66.8 ± 3.7 kJ mol−1, ∆S 1# = −81 ± 12 JK−1 mol−1 and ∆H 2# = 95.1 ± 2.8 kJ mol−1, ∆S 2# = −34.4 ± 9.1 JK−1 mol−1). The low enthalpy of activation and negative entropy of activation indicate an associative mode of activation for both the steps.  相似文献   

3.
L-脯氨酸独有的亚胺基使其在生物医药领域具有许多独特的功能,并广泛用作不对称有机化合物合成的有效催化剂。本文在碱性介质中研究了二(氢过碘酸)合银(III)配离子氧化 L-脯氨酸的反应。经质谱鉴定,脯氨酸氧化后的产物为脯氨酸脱羧生成的 γ-氨基丁酸盐;氧化反应对脯氨酸及Ag(III) 均为一级;二级速率常数 k′ 随 [IO4-] 浓度增加而减小,而与 [OHˉ] 的浓度几乎无关;推测反应机理应包括 [Ag(HIO6)2]5-与 [Ag(HIO6)(H2O)(OH)]2-之间的前期平衡,两种Ag(III)配离子均作为反应的活性组分,在速控步被完全去质子化的脯氨酸平行地还原,两速控步对应的活化参数为: k1 (25 oC)=1.87±0.04(mol·L-1)-1s-1,∆ H1=45±4 kJ · mol-1, ∆ S1=-90±13 J· K-1·mol-1 and k2 (25 oC) =3.2±0.5(mol·L-1)-1s-1, ∆ H2=34±2 kJ · mol-1, ∆ S2=-122 ±10 J· K-1·mol-1。本文第一次发现 [Ag(HIO6)2]5-配离子也具有氧化反应活性。  相似文献   

4.

Abstract  

The interaction between chromium(III) and picolinic acid in weak acid aqueous solution was studied, resulting in the formation of a complex upon substitution of water molecules in the chromium(III) coordination sphere. Experimental results show that the reaction takes place in multiple steps. The first step is the formation of an ion pair, the second step (two consecutive steps) is the slow one corresponding to substitution of the first water molecule from the chromium aqueous complex coordination sphere by a picolinic acid molecule via oxygen atom of the carboxylic acid group and substitution of the second water molecule via nitrogen of the pyridine ring forming an 1:1 complex. Both consecutive steps were independent of chromium concentration. The rate constants of the 1st and 2nd consecutive steps were increased by increasing picolinic acid concentration. The corresponding activation parameters are ∆H 1obs * = 28.4 ± 4 kJ mol−1, ∆S 1obs * = −202 ± 26 J K−1 mol−1, ∆H 2obs * = 39.6 ± 5 kJ mol−1, and ∆S 2obs * = −175 ± 19 J K−1 mol−1. The third step is fast, corresponding to formation of the final complex [Cr(pic)3]. The logarithms of the formation constants of 1:1 and 1:3 complexes were found to be 1.724 and 4.274, respectively.  相似文献   

5.
The kinetics of oxidation of phenyldiethanolamine (PEA) by a silver(III) complex anion, [Ag(HIO6)2]5−, has been studied in an aqueous alkaline medium by conventional spectrophotometry. The main oxidation product of PEA has been identified as formaldehyde. In the temperature range 20.0–40.0 °C , through analyzing influences of [OH] and [IO 4 ]tot on the reaction, it is pseudo-first-order in Ag(III) disappearance with a rate expression: k obsd = (k 1 + k 2[OH]) K 1 K 2[PEA]/{f([OH])[IO 4 ]tot + K 1 + K 1 K 2 [PEA]}, where k 1 = (0.61 ± 0.02) × 10−2 s−1, k2 = (0.049 ± 0.002) M−1 s−1 at 25.0 °C and ionic strength of 0.30 M. Activation parameters associated with k 1 and k 2 have also been derived. A reaction mechanism is proposed involving two pre-equilibria, leading to formation of an Ag(III)-periodato-PEA ternary complex. The ternary complex undergoes a two-electron transfer from the coordination PEA to the metal center via two parallel pathways: one pathway is spontaneous and the other is assisted by a hydroxide ion.  相似文献   

6.
Oxidation of N-methylethylamine by bis(hydrogenperiodato)argentate(III) ([Ag(HIO6)2]5−) in alkaline medium results in demethylation, giving rise to formaldehyde and ethylamine as the oxidation products. The oxidation kinetics has been followed spectrophotometrically in the temperature range of 20.0–35.0 °C, and shows an overall second-order character: being first-order with respect to both Ag(III) and N-methylethylamine. The observed second-order rate constants k′ increase with increasing [OH] of the reaction medium, but decrease with increasing the total concentration of periodate. An empirical rate expression for k′ has been derived as: k′ = (k a + k b[OH])K 1/{f([OH])[IO4 ]tot + K 1}, where k a and k b are rate parameters, and K 1 is an equilibrium constant. These parameters have been evaluated at all the temperatures studied, enabling calculation of activation parameters. A reaction mechanism is suggested to involve two pre-equilibria, leading to formation of an intermediate Ag(III) complex, namely [Ag(HIO6)(OH)(MeNHEt)]2−. In the subsequent rate-determining steps, this intermediate undergoes inner-sphere electron transfer from the coordinated amine to the metal center via two distinct routes, one of which is spontaneous while the other is mediated by a hydroxide ion.  相似文献   

7.
The kinetics of the oxidation of promazine by trisoxalatocobaltate(III) were studied in the presence of a large excess of the cobalt(III) in tris buffer solution using u.v.–vis spectroscopy ([CoIII] = (0.6 − 2) × 10−3 M, [ptz] = 6 × 10−5 M, pH = 6.6–7.8, I = 0.1 M (NaCl), T = 288−308 K, l = 1 cm). The reaction proceeds via two consecutive reversible steps. In the first step, the reaction leads to formation of cobalt(II) species and a stable cationic radical. In the second step, cobalt(III) is reduced to cobalt(II) ion and a promazine radical is oxidized to the promazine 5-oxide. Linear dependences of the pseudo-first-order rate constants (k 1 and k 2) on [CoIII] with a non-zero intercept were established for both redox processes. Rates of reactions decreased with increasing concentration of the H+ ion indicating that the promazine and its radical exist in equilibrium with their deprotonated forms, which are reactive reducing species. The activation parameters for reactions studied were as follows: ΔH = 44 ± 1 kJ mol−1, ΔS = −100 ± 4 JK−1 mol−1 for the first step and ΔH = 25 ± 1 kJ mol−1, ΔS = −169 ± 4 J K−1 mol−1 for the second step, respectively. Mechanistic consequences of all the results are discussed.  相似文献   

8.
Peroxydisulfate (PDS) oxidizes N,N′-ethylenebis(isonitrosoacetyleacetoneimine)copper(II) complex, CuIIL, to the corresponding copper(III) complex, [CuIIIL]+. The kinetic runs were performed in the presence of EDTA to scavenge any trace metal impurities. The kinetics of the reaction at constant pH, ionic strength, and temperature obeys the rate law d[CuIIIL]/dt = 2k 2[CuIIL][S2O8 2−] with k 2 having a value of (8.85 ± 0.32) × 10−2 M−1 s−1 at μ = 0.30 M and T = 25.0 °C. The rate constant k 2 is not affected by variation of pH over the range 3.60–5.20. The second order rate constant is also unaffected by changing ionic strength. The values of k obs were determined over the temperature 25.0–40.0 °C range. The enthalpy of activation, ∆H*, and entropy of activation, ∆S*, have been calculated as 34.9 ± 0.5 kJ mol−1 and −173.3 ± 11.4 J K−1 mol−1, respectively. The kinetics of this reaction, as far as we know, is the first evidence that copper(III) is the likely reactive species in copper catalyzed PDS oxidation reactions.  相似文献   

9.
Kinetics of aqua ligand substitution from cis-[Ru(bpy)2(H2O)2]2+ by three vicinal dioximes, namely dimethylglyoxime (L1H), 1,2-cyclohexane dionedioxime (L2H) and α-furil dioxime (L3H) have been studied spectrophotometrically in the 45–60 °C temperature range. The rate constants increase with increasing dioxime concentration and approach a limiting condition. We propose the following rate law for the reaction in the 3.5–5.5 pH range: where k 2 is the interchange rate constant from outer sphere to inner sphere complex and K E is the outer sphere association equilibrium constant. Activation parameters were calculated from the Eyring plots for all three systems: ΔH  = 59.2 ± 8.8, 63.1 ± 6.8 and 69.7 ± 8.5 kJ mol−1, ΔS  = −122 ± 27, −117 ± 21 and −99 ± 26 J K−1 mol−1 for L1H, L2H and L3H, respectively. An associative interchange mechanism is proposed for the substitution process. Thermodynamic parameters calculated from the temperature dependence of the outer sphere association equilibrium constants give negative ΔG 0 values for all the systems studied at all the temperatures (ΔH 0 = 30.05 ± 2.5, 18.9 ± 1.1 and 11.8 ± 0.2 kJ mol−1; ΔS 0 = 123 ± 8, 94 ± 3 and 74 ± 1 J K−1 mol−1 for L1H, L2H and L3H, respectively), which also support our proposition.  相似文献   

10.
Oxidation of 3-(4-methoxyphenoxy)-1,2-propanediol (MPPD) by bis(hydrogenperiodato) argentate(III) complex anion, [Ag(HIO6)2]5− has been studied in aqueous alkaline medium by use of conventional spectrophotometry. The major oxidation product of MPPD has been identified as 3-(4-methoxyphenoxy)-2-ketone-1-propanol by mass spectrometry. The reaction shows overall second-order kinetics, being first-order in both [Ag(III)] and [MPPD]. The effects of [OH] and periodate concentration on the observed second-order rate constants k′ have been analyzed, and accordingly an empirical expression has been deduced:
where [IO4 ]tot denotes the total concentration of periodate and k a = (0.19 ± 0.04) M−1 s−1, k b = (10.5 ± 0.3) M−2 s−1, and K 1 = (5.0 ± 0.8) × 10−4 M at 25.0 °C and ionic strength of 0.30 M. Activation parameters associated with k a and k b have been calculated. A mechanism is proposed, involving two pre-equilibria, leading to formation of a periodato–Ag(III)–MPPD complex. In the subsequent rate-determining steps, this complex undergoes inner-sphere electron-transfer from the coordinated MPPD molecule to the metal center by two paths: one path is independent of OH, while the other is facilitated by a hydroxide ion.  相似文献   

11.
The interaction of thiosemicarbazide with the title complex has been studied spectrophotometrically in aqueous medium as a function of [complex], [thiosemicarbazide], pH and temperature at constant ionic strength. At pH 7.4, the reaction shows two distinct paths; both of which are [thiosemicarbazide] dependent. A parallel reaction scheme fits well with the experimental findings. An associative interchange mechanism is proposed for both the paths; the activation parameters calculated from Eyring plots are ΔH1 = 14.2 ± 0.8 kJ mol−1, ΔS1 = −241 ± 2 JK−1 mol−1, ΔH2 = 30.8 ± 1.4 kJ mol−1 and ΔS2 = −236 ± 4 JK−1 mol−1. From the temperature dependence of the outer sphere association complex equilibrium constants, the thermodynamic parameters calculated are ΔH1° = 34.25 ± 1.9 kJ mol−1, ΔS1° = 146 ± 6 J K−1 mol−1 and ΔH2° = 9.4 ± 1.1 kJ mol−1, ΔS2° = 71 ± 3 JK−1 mol−1, which gives a negative ΔG° at all temperatures studied, supporting the spontaneous formation of an outer sphere association complex.  相似文献   

12.
The kinetics of the intra-molecular electron transfer of an adduct of l-ascorbic acid and the [Fe3IIIO(CH3COO)6(H2O)3]+ cation in aqueous acetate buffer was studied spectrophotometrically, over the ranges 2.55 ≤ pH ≤ 3.74, 20.0 ≤ θ ≤ 35.0 °C, at an ionic strength of 0.50 and 1.0 mol dm−3 (NaClO4). The reaction of l-ascorbic acid and the complex cation involves the rapid formation of an adduct species followed by a slower reduction in the iron centres through consecutive one-electron transfer processes. The final product of the reaction is aqueous iron(II) in acetate buffer. The proposed mechanism involves the triaqua and diaqua-hydroxo species of the complex cation, both of which form adducts with l-ascorbic acid. At 25 °C, the equilibrium constant for the adduct formation was found to be 86 ± 15 and 5.8 ± 0.2 dm3 mol−1 for the triaqua and diaqua-hydroxo species, respectively. The kinetic parameters derived from the rate expression have been found to be: k 0 = (1.12 ± 0.02) × 10−2 s−1 for the combined spontaneous decomposition and k 1 = (4.47 ± 0.06) × 10−2 s−1H 1 = 51.0 ± 2.3 kJ mol−1, ΔS 1 = −100 ± 8 J K−1 mol−1), k 2 = (4.79 ± 0.38) × 10−1 s−1H 2 = 76.5 ± 0.8 kJ mol−1, ΔS 2 = 6 ± 3 J K−1 mol−1) for the triaqua and diaqua-hydoxo species, respectively.  相似文献   

13.
The kinetics of the electron-transfer reactions between promazine (ptz) and [Co(en)2(H2O)2]3+ in CF3SO3H solution ([CoIII] = (2–6) × 10−3 m, [ptz] = 2.5 × 10−4 m, [H+] = 0.02 − 0.05 m, I = 0.1 m (H+, K+, CF3SO 3 ), T = 288–308 K) and [Co(edta)] in aqueous HCl ([CoIII] = (1 − 4) × 10−3 m, [ptz] = 1 × 10−4 m, [H+] = 0.1 − 0.5 m, I = 1.0 m (H+, Na+, Cl), T = 313 − 333 K) were studied under the condition of excess CoIII using u.v.–vis. spectroscopy. The reactions produce a CoII species and a stable cationic radical. A linear dependence of the pseudo-first-order rate constant (k obs) on [CoIII] with a non-zero intercept was established for both redox processes. The rate of reaction with the [Co(en)2(H2O)2]3+ ion was found to be independent of [H+]. In the case of the [Co(edta)] ion, the k obs dependence on [H+] was linear and the increasing [H+] accelerates the rate of the outer-sphere electron-transfer reaction. The activation parameters were calculated as follows: ΔH = 105 ± 4 kJ mol−1, ΔS = 93 ± 11 J K−1mol−1 for [Co(en)2(H2O)2]3+; ΔH = 67 ± 9 kJ mol−1, ΔS = − 54 ± 28 J K−1mol−1 for [Co(edta)].  相似文献   

14.
Summary The kinetics of the acid-catalysed hydrolysis of the [(imidazole)4Co(CO3)]+ ion was found to follow the rate law -dln[complex]/dt = k 1 K[H+](1 + K[H +]) in the 25–45 °C range, [H+] 0.05–1.0 m range and I = 1.0m. The reaction sequence consists of a rapid protonation equilibrium followed by the one-end dissociation of the coordinated carbonato ligand (rate-determining step) and subsequent fast release of the monodentate carbonato ligand. The rate parameter values, k 1 and ITK, at 25 °C are 6.48 × 10−3s−1 and 0.31m −1, respectively, and activation parameters for k 1 are ΔH 1 = 86.1 ± 1.2kJ mol−1 and ΔS 1 = 2.1 ± 6.3 J mol−1K−1. The hydrolysis rate increases with increase in ionic strength. The different ways of dealing with the data fit are presented and discussed. The kinetic results are compared with those for the similar cobalt(III) complexes.  相似文献   

15.
The oxidation of N,N-dimethylethanolamine (DMEA) by bis(hydrogenperiodato) argentate(III) ([Ag(HIO6)2]5−) was studied in aqueous alkaline medium. Formaldehyde and dimethylamine were identified as the major oxidation products after the oxidation of DMEA. The oxidation kinetics was followed spectrophotometrically in the temperature range of 25.0 °C–40.0 °C. It was found that the reaction was first order in [Ag(III)]; the oberved first-order rate constants k obsd as functions of [DMEA], [OH] and total concentration of periodate ([IO4-]tot[\mathrm{IO}_{4}^{-}]_{\mathrm{tot}}) were analyzed and were revealed to follow a rate expression: kobsd = (k1 +k2[OH-])K1K2[DMEA]/{f([OH-])[IO4-]tot+ K1 + K1K2[DMEA]}k_{\mathrm{obsd}} = (k_{1} +k_{2}[\mathrm{OH}^{-}])K_{1}K_{2}[\mathrm{DMEA}]/\{f([\mathrm{OH}^{-}])[\mathrm{IO}_{4}^{-}]_{\mathrm{tot}}+ K_{1} + K_{1}K_{2}[\mathrm{DMEA}]\}. Rate constants k 1 and k 2 and equilibrium constant K 2 were derived; activation parameters corresponding to k 1 and k 2 were computed. In the proposed reaction mechanism, a peridato-Ag(III)-DMEA ternary complex is formed indirectly through a reactive intermediate species [Ag(HIO6)(OH)(H2O)]2−. In subsequent rate-determining steps as described by k 1 and k 2, the ternary complex decays to Ag(I) through two reaction pathways: one of which is spontaneous and the other is prompted by an OH.  相似文献   

16.
Monomeric extracellular endoglucanase (25 kDa) of transgenic koji (Aspergillus oryzae cmc-1) produced under submerged growth condition (7.5 U mg−1 protein) was purified to homogeneity level by ammonium sulfate precipitation and various column chromatography on fast protein liquid chromatography system. Activation energy for carboxymethylcellulose (CMC) hydrolysis was 3.32 kJ mol−1 at optimum temperature (55 °C), and its temperature quotient (Q 10) was 1.0. The enzyme was stable over a pH range of 4.1–5.3 and gave maximum activity at pH 4.4. V max for CMC hydrolysis was 854 U mg−1 protein and K m was 20 mg CMC ml−1. The turnover (k cat) was 356 s−1. The pK a1 and pK a2 of ionisable groups of active site controlling V max were 3.9 and 6.25, respectively. Thermodynamic parameters for CMC hydrolysis were as follows: ΔH* = 0.59 kJ mol−1, ΔG* = 64.57 kJ mol−1 and ΔS* = −195.05 J mol−1 K−1, respectively. Activation energy for irreversible inactivation ‘E a(d)’ of the endoglucanase was 378 kJ mol−1, whereas enthalpy (ΔH*), Gibbs free energy (ΔG*) and entropy (ΔS*) of activation at 44 °C were 375.36 kJ mol−1, 111.36 kJ mol−1 and 833.06 J mol−1 K−1, respectively.  相似文献   

17.
Condensed and gas phase enthalpies of formation of 3:4,5:6-dibenzo-2-hydroxymethylene-cyclohepta-3,5-dienenone (1, (−199.1 ± 16.4), (−70.5 ± 20.5) kJ mol−1, respectively) and 3,4,6,7-dibenzobicyclo[3.2.1]nona-3,6-dien-2-one (2, (−79.7 ± 22.9), (20.1 ± 23.1) kJ mol−1) are reported. Sublimation enthalpies at T=298.15 K for these compounds were evaluated by combining the fusion enthalpies at T = 298.15 K (1, (12.5 ± 1.8); 2, (5.3 ± 1.7) kJ mol−1) adjusted from DSC measurements at the melting temperature (1, (T fus, 357.7 K, 16.9 ± 1.3 kJ mol−1)); 2, (T fus, 383.3 K, 10.9 ± 0.1) kJ mol−1) with the vaporization enthalpies at T = 298.15 K (1, (116.1 ± 12.1); 2, (94.5 ± 2.2) kJ mol−1) measured by correlation-gas chromatography. The vaporization enthalpies of benzoin ((98.5 ± 12.5) kJ mol−1) and 7-heptadecanone ((94.5 ± 1.8) kJ mol−1) at T = 298.15 K and the fusion enthalpy of phenyl salicylate (T fus, 312.7 K, 18.4 ± 0.5) kJ mol−1) were also determined for the correlations. The crystal structure of 1 was determined by X-ray crystallography. Compound 1 exists entirely in the enol form and resembles the crystal structure found for benzoylacetone.  相似文献   

18.
The kinetics of base hydrolysis ofcis-[RuCl2(en)2]+ (en=1,2-diaminoethane),cis-α-[RuCl2(trien)]+ andcis-α-[RuCl(OH)(trien)]2+ (trien=1,8-diamino-3,6-diazaoctane) have been studied. All the reactions are fast and obey the second-order rate law,-d[complex]/dt=k[OH][complex], with complete retention of configuration. A conjugate base mechanism involving a squarepyramidal intermediate is suggested. The Arrhenius parameters and rate constants found are respectively: ΔH 14.2±0.5, 7.2±0.1, 10.9±0.1 M cal mol−1; ΔS 1.3, 29, 22 cal deg−1 mol; log A 13.5, 6.9, 8.6 kOH 533 (27.2°C) 14.5 (24.4° C) 1.65 (25°C) M−1s−1.  相似文献   

19.
The reductions of [Co(CN)5NO2]3−, [Co(NH3)5NO2]2+ and [Co(NH3)5ONO]2+, by TiIII in aqueous acidic solution have been studied spectrophotometrically. Kinetic studies were carried out using conventional techniques at an ionic strength of 1.0 mol dm−3 (LiCl/HCl) at 25.0 ± 0.1 °C and acid concentrations between 0.015 and 0.100 mol dm−3. The second-order rate constant is inverse—acid dependent and is described by the limiting rate law:- k2 ≈ k0 + k[H+]−1,where k=k′Ka and Ka is the hydrolytic equilibrium constant for [Ti(H2O)6]3+. Values of k0 obtained for [Co(CN)5NO2]3−, [Co(NH3)5NO2]2+ and [Co(NH3)5ONO]2+ are (1.31 ± 0.05) × 10−2 dm3 mol−1 s−1, (4.53 ± 0.08) × 10−2 dm3 mol−1 s−1 and (1.7 ± 0.08) × 10−2 dm3 mol−1 s−1 respectively, while the corresponding k′ values from reductions by TiOH2+ are 10.27 ± 0.45 dm3 mol−1 s−1, 14.99 ± 0.70 dm3 mol−1 s−1 and 17.93 ± 0.78 dm3 mol−1 s−1 respectively. Values of K a obtained for the three complexes lie in the range (1–2) × 10−3 mol dm−3 which suggest an outer-sphere mechanism.  相似文献   

20.
The oxidation of N,N-dimethylhydroxylamine (DMHAN) by nitrous acid is investigated in perchloric acid and nitric acid medium, respectively. The effects of H+, DMHAN, ionic strength and temperature on the reaction are studied. The rate equation in perchloric acid medium has been determined to be −d[HNO2]/dt = k[DMHAN][HNO2], where k = 12.8 ± 1.0 (mol/L)−1 min−1 when the temperature is 18.5 °C and the ionic strength is 0.73 mol/L with an activation energy about 41.5 kJ mol−1. The reaction becomes complicated when it is performed in nitric acid medium. When the molarity of HNO3 is higher than 1.0 mol/L, nitrous acid will be produced via the reaction between nitric acid and DMHAN. The reaction products are analyzed and the reaction mechanism is discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号