首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical behaviour of siloles toward various organolithium reagents in THF has been investigated. The reaction of 1-methyl-1-(trimethylsilyl)-, 1-phenyl-1-(trimethylsilyl)- and 1,1-bis(trimethylsilyl)dibenzosilole (I, II and III) with a large excess of an alkyllithium such as methyllithium or butyllithium afforded 1,1-dialkyldibenzosiloles in quantitative yields. Treatment of I with an excess of phenyllithium gave a mixture of 1-methyl-1-phenyl- and 1,1-diphenyldibenzosilole quantitatively, while with an excess of tert-butyllithium, I afforded 1,1-dimethyl- and 1-tert-butyl-1-methyldibenzosilole in low yield. Similar treatment of I and II with 1 equiv. of methyl- or butyl-lithium yielded a mixture of the corresponding mono- and dialkyl-substituted dibenzosiloles. 1-Methyl-3,4-diphenyl-1,2,5-tris(trimehylsilyl)silole reacted with methyllithium in THF to give 1,1-dimethyl-3,4-diphenyl-2,2,5-tris(trimethylsilyl) silole. Similarly, both 2,4-diphenyl-1,1,3,5-tetrakis(trimethylsilyl)silole and 4,5-diphenyl-1,1,2,3-tetrakis(trimethylsilyl)silole with methyllithium afforded two isomers of 1-methyl-2,4-diphenyl-1,2,3,5-tetrakis(trimethylsilyl)-1-silacyclopent-3-ene in a ratio of 3 : 2 in high yields.  相似文献   

2.
2,5-Bis(triphenylsilylethynyl)-3,4-diphenylsiloles with different 1,1-substituents [XYSi(CPh)(2) (C-C≡C-SiPh(3))(2)] (Ph=phenyl) were synthesized in high yields by the Sonogashira coupling of 2,5-dibromo-3,4-diphenylsiloles with triphenylsilylacetylene, and two of these were characterized crystallographically. Crystal structures and theoretical calculations showed that the new silole molecules had higher conjugation than 2,5-diarylsiloles. They possessed low HOMO and LUMO energy levels due to the electron-withdrawing effect of the triphenylsilylethynyl groups. Cyclic voltammetry analysis revealed low electron affinities, which were comparable to those of perfluoroarylsiloles. B3LYP/6-31* calculations demonstrated that the new siloles possessed large reorganization energies for electron and hole transfers and high electron mobilities. A mobility of up to 1.2×10(-5) cm(2) V(-1) s(-1) was obtained by the transient electroluminescence method, which was about fivefold higher than that of tris(8-hydroxyquinolinato)aluminum, a widely used electron-transport material, under the same conditions. All of the silole molecules possessed high thermal stability. Although, their solutions were weakly emissive, their nanoparticle suspensions and thin films emitted intense blue-green light upon photoexcitation, demonstrating a novel feature of aggregation-induced emission (AIE). Polarized emissions were observed in the silole crystals. The addition of solvents, which did not dissolve the silole molecules, into silole-containing solutions caused self-assembly of the molecules, which produced macroscopic fibrils with strong light emissions.  相似文献   

3.
2,3,4,5‐Tetraarylsiloles are a class of important luminogenic materials with efficient solid‐state emission and excellent electron‐transport capacity. However, those exhibiting outstanding electroluminescence properties are still rare. In this work, bulky 9,9‐dimethylfluorenyl, 9,9‐diphenylfluorenyl, and 9,9′‐spirobifluorenyl substituents were introduced into the 2,5‐positions of silole rings. The resulting 2,5‐difluorenyl‐substituted siloles are thermally stable and have low‐lying LUMO energy levels. Crystallographic analysis revealed that intramolecular π–π interactions are prone to form between 9,9′‐spirobifluorene units and phenyl rings at the 3,4‐positions of the silole ring. In the solution state, these new siloles show weak blue and green emission bands, arising from the fluorenyl groups and silole rings with a certain extension of π conjugation, respectively. With increasing substituent volume, intramolecular rotation is decreased, and thus the emissions of the present siloles gradually improved and they showed higher fluorescence quantum yields (ΦF=2.5–5.4 %) than 2,3,4,5‐tetraphenylsiloles. They are highly emissive in solid films, with dominant green to yellow emissions and good solid‐state ΦF values (75–88 %). Efficient organic light‐emitting diodes were fabricated by adopting them as host emitters and gave high luminance, current efficiency, and power efficiency of up to 44 100 cd m?2, 18.3 cd A?1, and 15.7 lm W?1, respectively. Notably, a maximum external quantum efficiency of 5.5 % was achieved in an optimized device.  相似文献   

4.
The deciphering of structure–property relationships is of high importance to rational design of functional molecules and to explore their potential applications. In this work, a series of silole derivatives substituted with benzo[b]thiophene (BT) at the 2,5‐positions of the silole ring are synthesized and characterized. The experimental investigation reveals that the covalent bonding through the 2‐position of BT (2‐BT) with silole ring allows a better conjugation of the backbone than that achieved though the 5‐position of BT (5‐BT), and results in totally different emission behaviors. The silole derivatives with 5‐BT groups are weakly fluorescent in solutions, but are induced to emit intensely in aggregates, presenting excellent aggregation‐induced emission (AIE) characteristics. Those with 2‐BT groups can fluoresce more strongly in solutions, but no obvious emission enhancements are found in aggregates, suggesting they are not AIE‐active. Theoretical calculations disclose that the good conjugation lowers the rotational motions of BT groups, which enables the molecules to emit more efficiently in solutions. But the well‐conjugated planar backbone is prone to form strong intermoelcular interactions in aggregates, which decreases the emission efficiency. Non‐doped organic light‐emitting diodes (OLEDs) are fabricated by using these siloles as emitters. AIE‐active silole derivatives show much better elecroluminescence properties than those without the AIE characterisic, demonstrating the advantage of AIE‐active emitters in OLED applications.  相似文献   

5.
A new type of solid-state photochromism was observed in an AB2-type molecular assembly comprising a central silole and two peripheral o-carborane units, and in this assembly, depending on the assembling positions of those units at the adjoining benzene ring, two different regioisomers were formed: Si-m-Cb and Si-p-Cb . Each isomer showed different solid-state photochromism depending on its solid-state molecular conformation and was either in the crystalline or amorphous state. The crystals of each meta- or para-isomer, CSi-m-Cb or CSi-p-Cb, showed yellow or blue emission, and mechanically grinding those crystals into amorphous powders of ASi-m-Cb and ASi-p-Cb, switched their emissions to blue and yellow, respectively. Photophysical studies revealed that the electronic interaction between silole and o-carborane units determined the emission color. The crystal and DFT-optimized structures each account for the crystalline and amorphous structures, respectively, and are correlated well with the electronic interactions in the molecular assembly in the solid state, thus enabling the prediction of the solid-state molecular conformational change.  相似文献   

6.
The absolute enthalpies of formation of 3,4-, 2,3-, and/or 2,4-didehydropyridines (3,4-, 2,3- and 2,4-pyridynes) have been determined by using energy-resolved collision-induced dissociation of deprotonated 2- and 3-chloropyridines. Bracketing experiments find the gas-phase acidities of 2- and 3-chloropyridines to be 383 ± 2 and 378 ± 2 kcal/mol, respectively. Whereas deprotonation of 3-chloropyridine leads to formation of a single ion isomer, deprotonation of the 2-chloro isomer results in a nearly 60:40 mixture of regioisomers. The enthalpy of formation of 3,4-pyridyne is measured to be 121 ± 3 kcal/mol by using the chloride dissociation energy for deprotonated 3-chloropyridine. The structure of the product formed upon dissociation of the ion from 2-chloropyridine cannot be unequivocally assigned because of the isomeric mixture of reactant ions and the fact that the potential neutral products (2,3-pyridyne and 2,4-pyridyne) are predicted by high level spin-flip coupled-cluster calculations to be nearly the same in energy. Consequently, the enthalpies of formation for both neutral products are assigned to be 130 ± 3 kcal/mol. Comparison of the enthalpies of dehydrogenation of benzene and pyridine indicates that the nitrogen in the pyridine ring does not have any effect on the stability of the aryne triple bond in 3,4-pyridyne, destabilizes the aryne triple bond in 2,3-pyridyne, and stabilizes the 1,3-interaction in 2,4-pyridyne compared to that in m-benzyne. Natural bond order calculations show that the effects on the 2,3- and 2,4-pyridynes result from polarization of the electrons caused by interaction with the lone pair. The polarization in 2,4-pyridyne is stabilizing because it creates a 1,2-interaction between the nitrogen and dehydrocarbons that is stronger than the 1,3-interaction between the dehydrocarbons.  相似文献   

7.
2,5‐Bis(2‐bromofluorene‐7‐yl)silole was prepared by a modified one‐pot synthesis with a reverse addition procedure, from which novel silole‐containing polyfluorenes with binary random and alternating structures (silole contents between 4.5 and 25% and high Mw up to 509 kDa were successfully synthesized. The well‐defined repeating unit of the alternating copolymer comprises a terfluorene and a silole ring. Optoelectronic properties including UV absorption, electrochemistry, photoluminescence (PL), and electroluminescence (EL) of the copolymers were examined. The different excitation energy transfers from fluorene to silole of the copolymers in solution and in the solid state were compared. The films of the copolymers showed silole‐dominant green emissions with high absolute PL quantum yields up to 83%. EL devices of the copolymers with a configuration of ITO/PEDOT/copolymer/Ba/Al displayed exclusive silole emissions peaked at around 543 nm and the highest EL efficiency was achieved with the alternating copolymer. Using the alternating copolymer and poly(9,9‐dioctylfluorene) as the blend‐type emissive layer, a maximum external quantum efficiency of 1.99% (four times to that of the neat film) was realized, which was a high efficiency so far reported for silole‐containing polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 756–767, 2007  相似文献   

8.
Flash vacuum pyrolysis of 1-allyl-3,4-dimethylsilacyclopent-3-ene gives a complex mixture in which the 3,4-dimethylsilole is the main product. This new simple silole has been characterized by NMR and MS data and by its adduct with maleic anhydride.  相似文献   

9.
A novel glycocluster periphery functionalized by globotriaose (Galα1-4Galβ1-4Glcβ1-) possessing a silole moiety as a luminophor was synthesized. The photoluminescence spectrum of the glycocluster in pure water showed extremely strong emission at 475 nm. Analogous intense emission of the silole dendrimer was also observed in a lower water fraction of water/acetone mixture. The water fraction of the silole dendrimer solution strongly affected the emission intensity; however, these luminescences were constantly detected at around 475 nm.  相似文献   

10.
The excellent electroluminescent (EL) properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles, 1-methyl-1,2,3,4,5-pentaphenylsilole (MPPS), and 1,1,2,3,4,5-hexaphenylsilole (HPS) have been found. Despite some studies devoted to these materials, very little is known about the real origin of their unique EL properties. Therefore, we investigated the structures, photoluminescence (PL), and charge carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles as well as the effect of substituents on these characteristics. The single crystals of the three siloles involving 1,1-dimethyl-2,3,4,5-tetraphenylsilole (DMTPS), MPPS, and HPS were grown and their crystal structures were determined by X-ray diffraction. Three siloles have nonplanar molecular structures. The substituents at 1,1-positions enhance the steric hindrance and have predominant influence on the twisted degree of phenyl groups at ring carbons. This nonplanar structure reduces the intermolecular interaction and the likelihood of excimer formation, and increases PL efficiency in the solid state. The silole films show high fluorescence quantum yields (75-85%), whereas their dilute solutions exhibit a faint emission. The electronic structures of the three siloles were investigated using quantum chemical calculations. The highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs) are mainly localized on the silole ring and two phenyl groups at 2,5-positions in all cases, while the LUMOs have a significant orbital density at two exocyclic Si-C bonds. The extremely theoretical studies of luminescent properties were carried out. We calculated the nonradiative decay rate of the first excited state as well as the radiative one. It is found that the faint emission of DMTPS in solutions mainly results from the huge nonradiative decay rate. In solid states, molecular packing can remarkably restrict the intramolecular rotation of the peripheral side phenyl ring, which has a large contribution to the nonradiative transition process. This explains why the 1,1-disubstituted 2,3,4,5-tetraphenylsiloles in the thin films exhibit high fluorescence quantum yields. The charge carrier mobilities of the MPPS and HPS films were measured using a transient EL technique. We obtained a mobility of 2.1 x 10(-)(6) cm(2)/V.s in the MPPS film at an electric field of 1.2 x 10(6) V/cm. This mobility is comparable to that of Alq(3), which is one of the most extensively used electron transport materials in organic light-emitting diodes (LEDs), at the same electric field. The electron mobility of the HPS film is about approximately 1.5 times higher than that of the MPPS film. To the best of our knowledge, this kind of material is one of the most excellent emissive materials that possess both high charge carrier mobility and high PL efficiency in the solid states simultaneously. The excellent EL performances of MPPS and HPS are presumably ascribed to these characteristics.  相似文献   

11.
Three regioisomeric 3,4-methylenedioxyphenethylamines having the same molecular weight and major mass spectral fragments of equivalent mass have been reported as components of clandestine drug samples in recent years. These drugs of abuse are 3,4-methylenedioxy-N-ethylamphetamine, 3,4-methylenedioxy-N,N-dimethylamphetamine, and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine. These three compounds are a subset of a total of ten regioisomeric 3,4-methylenedioxyphenethylamines of molecular weight 207, yielding regioisomeric fragment ions of equivalent mass (m/z 72 and 135/136) in the electron impact mass spectrum. The specific identification of one of these compounds in a forensic drug sample depends upon the analyst's ability to eliminate the other regioisomers as possible interfering or coeluting substances. This paper reports the synthesis, mass spectral characterization, and chromatographic analysis of these ten unique regioisomers. The ten regioisomeric methylenedioxyphenethylamines are synthesized from commercially available precursor chemicals. The electron impact mass spectra of these regioisomers show some variation in the relative intensity of the major ions with only one or two minor ions that might be considered side-chain specific fragments. Thus, the ultimate identification of any one of these amines with the elimination of the other nine regioisomeric substances depends heavily upon chromatographic methods. Chromatographic separation of these ten uniquely regioisomeric amines is studied using gas chromatographic temperature program optimization.  相似文献   

12.
Herein, a new series of siloles that were 2,5‐substituted with planar fluorescent chromophores (PFCs), including fluorene, fluoranthene, naphthalene, pyrene, and anthracene, were synthesized and characterized. These compounds showed weak emission in the solution state, owing to active intramolecular rotation (IMR), but the synergistic effect from electronic coupling between the PFC and the silole ring compensated for the emission quenching by the IMR process to some extent, thereby affording higher emission efficiencies than those of 2,3,4,5‐tetraphenylsiloles in solution. These new siloles showed enhanced emission efficiencies in the aggregated state. The electroluminescence (EL) color and efficiency of new siloles were sensitive towards the PFC. Siloles containing naphthalene moieties showed green EL emission, whilst those containing anthracene moieties showed orange EL emission. The siloles containing pyrene moieties exhibited yellow EL emission at 546 nm, with a peak luminance of 49000 cd cm?2 and a high current efficiency of 9.1 cd A?1.  相似文献   

13.
Silole‐core phenylacetylene dendrimers were designed and synthesized, among them, the model compound (n = 0) and the first generation of the dendrimer (n = 1) were obtained by the reaction of 2,5‐dibromosilole with corresponding terminal alkynes, the second generation of the dendrimers (n = 2) was synthesized from 2,5‐diiodosilole. These compounds indicated the absorptions of both phenylacetylene dendrons (250–350 nm) and silole core (400–500 nm). The first generation displayed efficient energy transfer from phenylacetylene dendrons to silole core, whose energy transfer efficiency was as high as 80%. These compounds were used as chemical sensors to probe explosive, for picric acid (PA), the Stern–Volmer constants of model compound and the first generation are 7120 and 5490M?1, respectively. J. Heterocyclic Chem., (2012).  相似文献   

14.
Mass spectral differentiation of 3,4-methylenedioxymethamphetamine (3,4-MDMA), a controlled drug, and its 2,3-regioisomer from the ring substituted ethoxyphenethylamines is possible after formation of the perfluoroacyl derivatives, pentafluoropropionamides (PFPA), and heptafluorobutyrylamides (HFBA). The ring substituted ethoxyphenethylamines constitute a unique set of compounds having an isobaric relationship with 3,4-MDMA. These isomeric forms of the 2-, 3-, and 4-ethoxy phenethylamines have mass spectra essentially equivalent to 3,4-MDMA; all have molecular weight of 193 and major fragment ions in their electron ionization mass spectra at m/z 58 and 135/136. All the side chain regioisomers of 2-ethoxy phenethylamine having equivalent mass spectra to 3,4-MDMA are synthesized and compared via gas chromatography-mass spectrometry to 2,3- and 3,4-methylenedioxymethamphetamine. The mass spectra for the perfluoroacyl derivatives of the primary and secondary amine regioisomers are significantly individualized, and the side chain regioisomers yield unique hydrocarbon fragment ions at m/z 148, 162, and 176. Additionally, the substituted ethoxymethamphetamines are distinguished from the methylenedioxymethamphet-amines via the presence of the m/z 107 ion. Gas chromatographic separation on relatively non-polar stationary phases successfully resolves these derivatives.  相似文献   

15.
We synthesized a thiosemicarbazone-functionalized flavin (Fl-(H)TSC: 2-[2-(3,4-dihydro-7,8-dimethyl-2,4-dioxobenzo[g]pteridin-10(2H)-yl)ethylidene]-hydrazinecarbothioamide) and its Pt(II) complex [Pt(Fl-TSC)(2)], and characterized it using X-ray diffraction, UV-visible absorption and luminescence spectroscopy. X-ray structural analysis for [Pt(Fl-TSC)(2)] revealed that the structure of the isoalloxazine part was almost the same as that in lumiflavin (7,8,10-trimethylisoalloxazine), and the thiosemicarbazone moiety acted as a bidentate ligand to form a PtS(2)N(2) planar conformation. UV-visible absorption and luminescence spectra of these compounds were very similar to those of riboflavin, but the emission intensity and the lifetime decreased considerably. Theoretical calculations suggested that the charge-separated state (Fl˙(-)-TSC˙(+)) contributed to the faster quenching from the (1)π-π* emission state.  相似文献   

16.
The efficient synthesis of novel unsymmetrical dithienosiloles, 7,7-dimethyl-4,6-di(trimethylsilyl)-dithieno[2,3-b:4',3'-d]silole (1) and 7,7-dimethyl-2,4,6-tri(trimethylsilyl)-dithieno[2,3-b:4',3'-d]silole (2) has been developed by intramolecular silole formation with 4,4'-dibromo-2,2',5,5'-tetrakis(trimethylsilyl)-[3,3']bithienyl (3) as the starting material in the presence of t-BuLi. Upon treatment with N-bromosuccinimide (NBS) under controlled conditions, dithieno[2,3-b:4',3'-d]silole was selectively brominated to produce mono-, di-, and tribrominated dithieno[2,3-b:4',3'-d]siloles in good yields. The crystal structures of the title compounds are described.  相似文献   

17.
Three regioisomeric 3,4-methylenedioxyphenethylamines having the same molecular weight and major mass spectral fragments of equal mass have been reported as drugs of abuse in forensic studies in recent years. These compounds are 3,4-methylenedioxy-N-ethylamphetamine (MDEA), 3,4-methylenedioxy-N-N-dimethylamphetamine (MDMMA), and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB). The mass spectra of the regioisomers (2,3-methylenedioxyphenethylamines) are essentially equal to the three compounds reported as drugs of abuse. This paper reports the synthesis, mass spectral characterization, and chromatographic analysis of these six regioisomeric amines. The six regioisomeric methylenedioxyphenethylamines are synthesized from commercially available starting materials. The electron impact mass spectra of these regioisomers show some variation in the relative intensity of the major ions with only a couple of minor ions that may indicate side chain specific fragments. Differentiation by mass spectrometry is only possible after the formation of the perfluoroacyl derivatives, pentafluoropropionylamides (PFPA) and heptafluorobutrylamides (HFBA). Gas chromatographic separation on non-polar stationary phases (Rtx-1 and Rtx-5) is not successful at resolving the three 3,4-methylenedioxyphenethylamines from the three 2,3-methylenedioxyphenethylamines as the underivatized amines. The six underivatized amines are resolved on the more polar trifluoropropylmethyl polysiloxane Rtx-200 stationary phase as well as a permethylated beta-cyclodextran Rtx-bDEX stationary phase. Gas chromatographic separation is successful at resolving the four PFPA and the four HFBA derivatives on the Rtx-200 stationary phase as well as the permethylated beta-cyclodextran stationary phase. The 2,3-methylenedioxyphenethylamine derivatives (compounds 4 and 6) eluted before the 3,4-methylenedioxyphenethylamine derivatives (compounds 1 and 3) as both the PFPA and HFBA derivatives.  相似文献   

18.
2,5‐Dihydroxyboryl‐1,1‐dimethyl‐3,4‐bis(3‐fluorophenyl)‐silole ( 2a ) was prepared in 40% overall yield by reaction between 3‐fluorophenyl‐acetylene and dichlorodimethylsilane to yield bis[2(3‐fluorophenyl)ethynyl]dimethylsilane ( 1a ), which subsequently undergoes a reductive cyclization reaction using an excess of lithium naphthalenide. The fluoro substituted silole was applied as a co‐monomer in the Suzuki polycondensation reaction with 2,7‐dibromo‐9,9‐dioctyl‐fluorene. An oligomer ( 3a ) with a degree of polymerization of 6 was prepared and compared with an oligomer without fluoro substitution on the silole ( 3b ), with a degree of polymerization of 4. The new oligomers were spin coated onto glass slides and showed weak green photoluminescence (PL) in the solid state. Cyclic voltammetry, visible absorption spectroscopy, and density functional theory calculations showed that the fluoro substituents were sufficiently electron withdrawing to lower both the highest occupied molecular orbital and the lowest unoccupied molecular orbital in the oligomer. Two further alternating co‐oligomers were prepared from 2,5‐dihydroxyboryl‐1,1‐dimethyl‐3,4‐bis(phenyl)‐silole ( 2b ) and 1,3‐dibromo‐5‐fluoro‐benzene ( 4a ) or 1,3‐dibromobenzene ( 4b ). These oligomers both had degrees of polymerization of 8 and showed green PL in the solid state. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5116–5125, 2009  相似文献   

19.
为了研究模板分子中作用基团的数目和位置对印迹聚合物印迹效应的影响, 分别以含有羟基数目和位置不同的羟基苯甲酸化合物3,4,5-三羟基苯甲酸(3,4,5-THBA), 3,4-二羟基苯甲酸(3,4-DHBA), 2,4-二羟基苯甲酸(2,4-DHBA)和3-羟基苯甲酸(3-HBA)为模板分子, 以丙烯酰胺为功能单体, 乙二醇二甲基丙烯酸酯为交联剂和乙腈(MeCN)为致孔剂, 采用非共价本体聚合方法制备了对应的印迹聚合物, 用色谱法评价了其分子识别性能. 结果表明, 制备的印迹聚合物对相应的模板分子均具有印迹效应, 在流动相H2O/MeCN(体积比1/99)中, 各印迹聚合物对相应的模板分子3,4,5-THBA, 3,4-DHBA, 2,4-DHBA和3-HBA的印迹因子分别为5.51, 5.55, 2.60和2.03. 通过与同样条件下制备的龙胆酸(GA)、水杨酸(SA)和对-羟基苯甲酸(4-HBA)印迹聚合物对其模板分子印迹效应的比较发现, 模板分子中作用基团数目越多, 印迹效率越高; 模板分子中作用基团-COOH和-OH的相对位置对印迹效率影响很大, 当-COOH和-OH在苯环上处于对位时的印迹效率, 高于其处于间位的印迹效率; 当-COOH和-OH在苯环上处于邻位时, 由于形成分子内氢键会降低其印迹效率. 实验还发现, 3,4-DHBA的印迹聚合物可以实现其结构类似物3,4,5-THBA和2,4-DHBA的基线分离, 为生物活性组分3,4,5-THBA的分离和测定提供了依据.  相似文献   

20.
Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole   总被引:1,自引:0,他引:1  
Aggregation greatly boosts emission efficiency of the silole, turning it from a weak luminophor into a strong emitter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号