首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
考虑液膜空化效应的影响,研究螺旋槽液体润滑机械密封的动力学特性. 基于液体润滑理论和小扰动法,建立了考虑液膜空化的密封微扰膜压控制方程,采用有限单元法对端面液膜三自由度微扰下的液膜刚度和阻尼系数进行了数值求解,分析了不同参数对液膜密封动力系数的影响. 螺旋槽深度在10 μm左右、槽坝比在0.75左右、槽宽比在0.4左右,螺旋角在9°左右时液膜具有最大的轴向和角向刚度系数. 螺旋槽深度在5 μm左右、槽宽比在0.6左右、螺旋角在20°左右时,两角向交叉阻尼绝对值最大. 初始偏角的存在使密封压力呈现非对称性,从而使两角向动力系数绝对值不再相等. 液膜轴向刚度kzz在数量级上远大于其余液膜刚度值,液膜轴向阻尼dzz、角向阻尼dαα和dββ远大于液膜其余阻尼值且随着转速和间隙的增大而减小.   相似文献   

2.
仿鸟翼微列螺旋槽干气密封性能分析与选型   总被引:4,自引:4,他引:0  
为改善单向螺旋槽干气密封在高速条件下存在的泄漏率高、稳定性欠佳等问题,提出一种仿鸟翼微列螺旋槽端面干气密封结构.基于气体润滑理论,建立仿鸟翼微列螺旋槽的端面几何模型和数学模型,数值分析周向开槽宽度和径向开槽宽度对轴向气膜刚度和泄漏率等密封特性参数的影响规律,给出仿鸟翼微列螺旋槽主要结构参数的优选值范围.在不同压力、线速度和膜厚条件下对比分析仿鸟翼微列螺旋槽干气密封与普通螺旋槽干气密封的开启力、轴向气膜刚度、泄漏率和刚漏比等密封特性,给出不同工况条件下两种型槽干气密封的密封性能等值线图.结果表明:在高速低压条件下,相较于单向螺旋槽干气密封,仿鸟翼微列螺旋槽干气密封的密封性和稳定性都有显著提升,其轴向气膜刚度增幅达到30%,泄漏率降幅达到10%.仿鸟翼微列螺旋槽干气密封性能等值线图的提出可为其工程选型及优化设计提供指导和借鉴.  相似文献   

3.
螺旋槽结构参数对干气密封动态特性的影响研究   总被引:3,自引:2,他引:1  
基于气体润滑理论,并通过小扰动法建立了螺旋槽干气密封微扰膜压控制方程,在高速高压条件下分析了螺旋槽结构参数对气膜动态特性系数的影响规律;基于动力学相关知识,在考虑动环轴向振动和角向偏摆的情况下建立了挠性安装静环运动方程,分析了膜厚的扰动行为,同时在考虑轴向和角向气膜扰动的共同作用下,提出以端面膜厚最大扰动量峰值和扰动稳定时间作为表征密封动态追随性的参数,并以此作为目标函数对螺旋槽结构参数进行优化.结果表明:在不同的高压条件下,当槽台宽比κ取0.9~1.5,槽坝比δ取1.8~2.4,螺旋角φ取18~24°,槽深h_g取6~8μm时,螺旋槽干气密封具有较好的动态追随性;在动态特性系数中主动态刚度对密封动态追随性的影响最大.  相似文献   

4.
基于自主设计的可视化试验装置及膜温和膜厚测量方法,对下游泵送螺旋槽密封空化特征及性能参数进行试验研究.探讨了油压和转速对不同螺旋槽密封液膜中空穴发生位置、空穴分布及空穴边界的影响,拟合了不同螺旋槽密封空穴边界的试验关系式,并对不同空化模型的理论泄漏量和膜厚与相应试验值进行了对比分析.结果表明:内槽型和中槽型密封的空穴均发生在螺旋槽内,但两者的空穴区形状明显不同;油压的增加有助于抑制液膜中空穴的发生,而转速的增加反之;尤其是内槽型,油压对其空穴发生影响更为显著;在低转速或高油压时,Reynolds和JFO两空化模型均可用于预测泄漏量和膜厚;在高转速或低油压时,JFO空化模型预测值更准确,而Reynolds空化模型预测值偏大.  相似文献   

5.
针对高速工况下的液膜润滑螺旋槽端面机械密封,建立了其湍流润滑模型,采用有限单元法结合松弛迭代技术实现了润滑方程和液膜湍流模型的数值求解,对比分析了层流模型和湍流模型下不同螺旋槽几何参数和工况参数对密封性能的影响. 结果表明:液膜湍流效应显著提升了螺旋槽机械密封端面液膜的动力润滑效应,密封的开启力、泄漏率和刚度明显大于层流模型预测值. 在不同条件下,比较而言螺旋槽内产生更加明显的湍流效应,其内液膜流动行为远不同于层流模型. 以开启力为优化目标,湍流模型获得的优化螺旋槽几何参数在螺旋角、槽深明显不同于层流模型. 在高速和低黏度介质下,机械密封的湍流效应不可忽略.   相似文献   

6.
为得到螺旋槽动压密封最优槽型参数,进一步提高其流体润滑特性,基于流体动压原理提出以恒闭合力下典型参数螺旋槽密封参数为初始值,以动压密封螺旋槽的结构参数槽数、槽宽比、槽坝比以及螺旋角为变量,以泄漏率与开启力之比最小化为优化目标的槽型优化方法.采用参数化建模方法,建立优化数学物理模型,得到一系列优化槽型,分析并讨论了新方法的优化机制,最后对两种优化槽型与初始槽型进行了分析对比,结果表明:对于不同转速和优化槽数,提出的优化方法具有较好的适用性,优化所得槽型集中表现为A、B两种结构参数,按螺旋角β、槽宽比γ1以及槽坝比γ2的顺序分别为15°、0.50以及0.55和22.5°、0.55以及0.55.新方法的优化机制为:通过调整螺旋角、槽宽比和槽坝比,外移压力峰值和均化周向压力,同时,减少槽和坝区流体转移,降低流体出口流速,实现保持高开启力以及降低泄漏率的目标.对典型螺旋槽和A、B槽型进行性能对比,结果表明:在小膜厚段,流体膜生成率均较大,因此高膜厚的典型螺旋槽为优选槽型,而在大膜厚段,泄漏率较低的B型槽为优选槽型,而A型槽在全膜厚段的表现介于二者之间.  相似文献   

7.
螺旋槽端面微间隙高速气流润滑密封特性   总被引:5,自引:5,他引:0  
考虑入口气流压力损失和出口阻塞效应,建立了微间隙端面高速气体润滑密封分析数学模型,对螺旋槽端面微间隙高速气流润滑密封特性进行研究.重点分析了不同密封间隙、密封压力和转速等工况条件下,入口压力损失和出口阻塞效应对开启力、泄漏率及气膜刚度等密封特性参数的影响规律.结果表明:高速气体阻塞效应使出口压力高于环境压力,压力损失使入口气膜压力下降,导致泄漏率和气膜刚度明显下降,并使开启力增加.随着密封压力和密封间隙的增加,阻塞效应增强,导致泄漏率和气膜刚度显著降低.密封压力10 MPa时,泄漏率降低可达20%,气膜刚度的下降可达30%以上.  相似文献   

8.
针对油气混输工况密封腔内含气率变化所引起的液膜承载力不稳定问题,考虑密封腔内油气两相介质的互溶性特征,将溶解度方程引入包含Jakobsson–Floberg–Olsson (JFO)边界条件的广义稳态Reynolds方程,建立了考虑甲烷溶解效应的液膜密封润滑模型.采用有限差分法求解该溶解润滑模型,研究了液膜压力、甲烷溶解度及油相黏度之间的相互影响机制.在不同的螺旋槽结构参数与工况条件下,对比分析了甲烷溶解效应对液膜密封机理及密封性能的影响.结果表明:甲烷溶解效应在液膜高压区对油相黏度影响大;考虑甲烷溶解时所得的液膜开启力减小、空化率增大、摩擦系数增大以及泄漏量减小,且液膜动压效应越强时甲烷溶解效应对密封性能的影响越大.在高压及输送油气介质时,气体溶解对密封性能的影响不可忽略.  相似文献   

9.
针对非接触机械密封端面开槽后所出现的膜厚不连续处存在的侧壁效应,在沟槽边界处将广义伯努利方程引入传统润滑方程,建立了考虑动压沟槽侧壁效应的液膜润滑螺旋槽端面机械密封数值分析模型. 采用有限单元法结合拉格朗日乘子法求解润滑方程,研究了不同螺旋槽几何参数和工况条件下沟槽侧壁效应对密封性能的影响. 结果表明:数值模型可方便捕捉沟槽边界处的压力跃变,侧壁效应在不同螺旋槽深度下表现出截然不同的影响规律,高转速、大螺旋角和小密封间隙下动压沟槽的侧壁效应较为显著. 理论模型和计算方法可为超高速工况螺旋槽机械密封的设计和局部惯性效应的研究提供指导.   相似文献   

10.
在考虑转轴轴向振动的情况下,基于气体润滑和动力学相关理论,建立了微扰膜压控制方程和挠性安装静环运动方程. 研究了介质压力、螺旋角对干气密封动态特性和瞬态响应的影响;定义了膜厚扰动的突变峰和周期峰,并以突变峰或周期峰最小作为动态性能的优化目标,基于完全析因设计法,开展了高参数螺旋槽干气密封动态性能影响因素间的交互作用分析. 研究结果表明:高速条件下,膜厚振动型态受介质压力影响较大,当介质压力较小时,气膜动态阻尼较小,气膜振动初始阶段易发生波幅逐渐衰减的振荡,而当介质压力增大到一定程度时较大的气膜动态阻尼使膜厚振动迅速衰减,振荡现象消失;高速高压条件下,除挠性环质量和弹簧刚度对周期峰的影响存在显著交互作用外,其余各影响因素对突变峰和周期峰均不存在明显的交互作用,可独立开展优化而不牺牲其结果精度.   相似文献   

11.
韩文娟  刘海 《力学与实践》2010,32(4):109-111
对《力学》中的物体自由度进行多方面分析,以深化教学、提高学生正 确分析物理问题的能力.使用实际教学分析的研究方法,在《力学》范围内讨论自由度与坐标、 自由与约束的关系并得以下结论: (1) 同一物体的自由度随其所在的``空间'不同而不同, 不因坐标系的选取不同而 异, 在同类参考系中不因参考系的动静而有别;(2)自由度遵循叠加原理. 讨论了质点系的总自由度及相关计算问题,并指出研究《力学》中自由度的意义.  相似文献   

12.
13.
14.
The present paper deals with development and design of new methods utilizing Wiedemann's effect for determination of state of strain in building structures. Wiedemann's effect and some features of torsional strain of magnetic field are the basis of new experimental method. Especially the point electromagnetic strain gages using the effect of pure torsion of electromagnetic field to enable universal examination. For strain-gage measurements, almost all physical quantities are used which can be related to the variation in length of the structures. From the electric strain measurements, the most commonly used methods are the measurements by resonance-wire strain gages or by electric-resistance strain gages. In this paper, electromagnetic strain gages are discussed using the Wiedemann effect, and the author describes some new measuring equipment and his own suggestions and methods based on an application of this effect.  相似文献   

15.
16.
17.
It is well known that the problem on nonseparating potential flow of an incompressible fluid about an array of profiles reduces to an integral equation for a certain real function, determined on the contours of the profiles of the array. As such a function one can take, as was done, for instance, in [1–5], the relative velocity of the fluid on the profiles of the array. For arrays of profiles of arbitrary shape it is necessary to solve the corresponding integral equation numerically. In the particular examples of the calculation of aerodynamic arrays that are available [1–3] the numerical methods used were based on the approximate evaluation of contour integrals by rectangle formulas. As investigations showed, sizeable errors arose thereby in the approximate solution obtained, these being especially significant in the case of curved profiles of relatively small bulk. In the present paper a method for the numerical solution of the integral equation obtained in [5] is proposed. The method is based on the replacement of a profile of the array with an inscribed N polygon, the length of whose sides is of the order N–1 and whose internal angles are close to . Convergence with increasing N of the numerical solution to an exact solution of the integral equations at the reference points is demonstrated. Examples of the calculation are given.Novosibirsk. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 105–112, March–April, 1972.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号