首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The use of ultrasonic energy for washing of textiles has been tried several times without achieving practical development. In fact, the softness of the fibres makes the cavitation to produce small erosion effect and the reticulate structure of the fabric favours the formation of air bubble layers which obstruct wave penetration. In addition, a high proportion of water with respect to the wash load and a certain water degassing is required to assure efficiency and homogeneity in the wash performance. Such requirements have hindered the commercial development of the ultrasonic washing machines for domestic purposes. For specific industrial applications, a great part of these limitations may be overcome. This article deals with a new process in which the fabric is exposed to the ultrasonic field in a flat format. Such process has been implemented at laboratory and at semi-industrial stage by using specially designed power ultrasonic transducers with rectangular plate radiators. The cleaning effect is produced by the intense cavitation field generated by the plate radiator within a thin layer of liquid where the fabric is introduced. The homogeneity of such effect is achieved by the successive exposure of all the fabric areas to the intense acoustic field. In this paper the structure and performance of the developed system are shown.  相似文献   

2.
Gudra T  Opieliński KJ 《Ultrasonics》2002,40(1-8):457-463
In different solutions of ultrasonic transducers radiating acoustic energy into the air there occurs the problem of the proper selection of the acoustic impedance of one or more matching layers. The goal of this work was a computer analysis of the influence of acoustic impedance on the transfer function of piezoceramic transducers equipped with matching layers. Cases of resonance and non-resonance matching impedance in relation to the transfer function and the energy transmission coefficient for solid state-air systems were analysed. With stable thickness of matching layers the required shape of the transfer function can be obtained through proper choice of acoustic impedance were built (e.g. maximal flat function). The proper choice of acoustic impedance requires an elaboration of precise methods of synthesis of matching systems. Using the known matching criteria (Chebyshev's, DeSilets', Souquet's), the transfer function characteristics of transducers equipped with one, two, and three matching layers as well as the optimisation methods of the energy transmission coefficient were presented. The influence of the backside load of the transducer on the shape of transfer function was also analysed. The calculation results of this function for different loads of the transducer backside without and with the different matching layers were presented. The proper load selection allows us to obtain the desired shape of the transfer function, which determines the pulse shape generated by the transducer.  相似文献   

3.
Dual- or multiple-frequency ultrasound stimulation is capable of effectively enhancing the acoustic cavitation effect over single-frequency ultrasound. Potential application of this sonoreactor design has been widely proposed such as on sonoluminescence, sonochemistry enhancement, and transdermal drug release enhancement. All currently available sonoreactor designs employed multiple piezoelectric transducers for generating single-frequency ultrasonic waves separately and then these waves were mixed and interfered in solutions. The purpose of this research is to propose a novel design of generating dual-frequency ultrasonic waves with single piezoelectric elements, thereby enhancing acoustic cavitation. Macroscopic bubbles were detected optically, and they were quantified at either a single-frequency or for different frequency combinations for determining their efficiency for enhancing acoustic cavitation. Visible bubbles were optically detected and hydrogen peroxide was measured to quantify acoustic cavitation. Test water samples with different gas concentrations and different power levels were used to determine the efficacy of enhancing acoustic cavitation of this design. The spectrum obtained from the backscattered signals was also recorded and examined to confirm the occurrence of stable cavitation. The results confirmed that single-element dual-frequency ultrasound stimulation can enhance acoustic cavitation. Under certain testing conditions, the generation of bubbles can be enhanced up to a level of five times higher than the generation of bubbles in single-frequency stimulation, and can increase the hydrogen peroxide production up to an increase of one fold. This design may serve as a useful alternative for future sonoreactor design owing to its simplicity to produce dual- or multiple-frequency ultrasound.  相似文献   

4.
J. Herbertz 《Ultrasonics》1976,14(6):278-280
Monitoring high power ultrasonic equipment and the determination of the efficiency of transducers depends upon the methods used to measure ultrasonic power. This paper discusses several such methods used on longitudinally vibrating horns, and describes in detail a new electronic method of measuring acoustic power.  相似文献   

5.
This paper describes the use of finite element (FE) analysis as a tool in the design process for laboratory based ultrasonic test cells. The system was designed to incorporate an array of ultrasonic transducers to provide a pressure focus in the centre of the cell and importantly, operate both above and below the cavitation threshold of the load medium. Furthermore, the cell incorporates a coolant jacket to accommodate temperature control of the load material associated with the process. A 2D FE model corresponding to a slice through the operational plane of the cell was developed and used to investigate the influence of cell wall material and thickness, transducer configuration, rotation of a metallic stirrer blade and heat transfer fluid on the cell acoustic response. Importantly, experimentally measured pressure field maps demonstrate good correlation with the FE predicted fields. A final manufactured test cell is shown to produce a highly focussed region of cavitation. Finally, the importance in accurately representing the acoustic properties of the constituent materials used in such FE models is demonstrated through an illustrated example.  相似文献   

6.
Shock-wave model of acoustic cavitation   总被引:1,自引:0,他引:1  
Shock-wave model of liquid cavitation due to an acoustic wave was developed, showing how the primary energy of an acoustic radiator is absorbed in the cavitation region owing to the formation of spherical shock-waves inside each gas bubble. The model is based on the concept of a hypothetical spatial wave moving through the cavitation region. It permits using the classical system of Rankine-Hugoniot equations to calculate the total energy absorbed in the cavitation region. Additionally, the model makes it possible to explain some newly discovered properties of acoustic cavitation that occur at extremely high oscillatory velocities of the radiators, at which the mode of bubble oscillation changes and the bubble behavior approaches that of an empty Rayleigh cavity. Experimental verification of the proposed model was conducted using an acoustic calorimeter with a set of barbell horns. The maximum amplitude of the oscillatory velocity of the horns' radiating surfaces was 17 m/s. Static pressure in the calorimeter was varied in the range from 1 to 5 bars. The experimental data and the results of the calculations according to the proposed model were in good agreement. Simple algebraic expressions that follow from the model can be used for engineering calculations of the energy parameters of the ultrasonic radiators used in sonochemical reactors.  相似文献   

7.
Acoustic irradiation can result in increased inter-phase mass and heat transfer rates. The second-order acoustic effects of cavitation, interfacial instability, radiation pressure and acoustic streaming are responsible for the enhancement in these rate processes. The application of sonic and ultrasonic energy in industrial processing is reviewed. A number of units using acoustic energy to enhance rates of conventional unit processes, for example, drying, solid-liquid extraction, etc, are described. In addition, new applications in waste water treatment and oil-water emulsion fuels are described. The development of newer, more efficient generators should lead to a greater use of acoustic energy for large-scale industrial processing.  相似文献   

8.
Evans MJ  Webster JR  Cawley P 《Ultrasonics》2000,37(8):589-594
The use of conical piezoelectric transducers as point acoustic sources has been investigated. It has been shown that transducers based on a design originally developed at the National Institute for Standards and Technology in the USA can be used as point transmitters over the frequency range of interest in acoustic emission measurements (100 kHz to around 1 MHz). They should, therefore, be suitable for use in experiments to calibrate structures so that acoustic emission source strengths can be determined. It has also been shown that measurements of the response of the transmitting transducer backing can be used to assess the coupling efficiency, and hence to remove concerns about inconsistent coupling affecting the calibration measurements. The results indicate that the variation of the backing response with coupling is due to a shift in the resonance frequencies of the transducer with the mechanical load impedance. If other transducers can be shown to behave in a similar fashion this effect could be used to measure coupling in standard acoustic emission and ultrasonic transducers.  相似文献   

9.
Shaul Ozeri 《Ultrasonics》2010,50(6):556-1092
This paper investigates ultrasonic transcutaneous energy transfer (UTET) as a method for energizing implanted devices at power level up to a few 100 mW. We propose a continuous wave 673 kHz single frequency operation to power devices implanted up to 40 mm deep subcutaneously. The proposed UTET demonstrated an overall peak power transfer efficiency of 27% at 70 mW output power (rectified DC power at the load).The transducers consisted of PZT plane discs of 15 mm diameter and 1.3 mm thick acoustic matching layer made of graphite. The power rectifier on the implant side attained 88.5% power transfer efficiency.The proposed approach is analyzed in detail, with design considerations provided to address issues such as recommended operating frequency range, acoustic link matching, receiver’s rectifying electronics, and tissue bio-safety concerns. Global optimization and design considerations for maximum power transfer are presented and verified by means of finite element simulations and experimental results.  相似文献   

10.
Combined sonication with dual-frequency ultrasound has been investigated to enhance heat transfer in forced convection. The test section used for this study consists of a channel with, on one hand, heating blocks normal to the water flow, equipped with thermocouples, and, on the other hand, two ultrasonic emitters. One is facing the heating blocks, thus the ultrasonic field is perpendicular, and the second ultrasonic field is collinear to the water flow. Two types of ultrasonic waves were used: low-frequency ultrasound (25 kHz) to generate mainly acoustic cavitation and high-frequency ultrasound (2 MHz) well-known to induce Eckart’s acoustic streaming. A thermal approach was conducted to investigate heat transfer enhancement in the presence of ultrasound. This approach was completed with PIV measurements to assess the hydrodynamic behavior modifications under ultrasound. Sonochemiluminescence experiments were performed to account for the presence and the location of acoustic cavitation within the water flow. The results have shown a synergetic effect using combined low-and-high-frequency sonication. Enhancement of heat transfer is related to greater induced turbulence within the water flow by comparison with single-frequency sonication. However, the ultrasonically-induced turbulence is not homogeneously distributed within the water flow and the synergy effect on heat transfer enhancement depends mainly on the generation of turbulence along the heating wall. For the optimal configuration of dual-frequency sonication used in this work, a local heat transfer enhancement factor up to 366% was observed and Turbulent Kinetic Energy was enhanced by up to 84% when compared to silent regime.  相似文献   

11.
Opieliński KJ  Gudra T 《Ultrasonics》2002,40(1-8):465-469
The effective ultrasonic energy radiation into the air of piezoelectric transducers requires using multilayer matching systems with accurately selected acoustic impedances and the thickness of particular layers. This problem is of particular importance in the case of ultrasonic transducers working at a frequency above 1 MHz. Because the possibilities of choosing material with required acoustic impedance are limited (the counted values cannot always be realised and applied in practice) it is necessary to correct the differences between theoretical values and the possibilities of practical application of given acoustic impedances. Such a correction can be done by manipulating other parameters of matching layers (e.g. by changing their thickness). The efficiency of the energy transmission from the piezoceramic transducer through different layers with different thickness enabling a compensation of non-ideal real values by changing their thickness was computer analysed. The result of this analysis is the conclusion that from the technological point of view a layer with defined thickness is easier and faster to produce than elaboration of a new material with required acoustic parameter.  相似文献   

12.
Various industrial processes such as sonochemical processing and ultrasonic cleaning strongly rely on the phenomenon of acoustic cavitation. As the occurrence of acoustic cavitation is incorporating a multitude of interdependent effects, the amount of cavitation activity in a vessel is strongly depending on the ultrasonic process conditions. It is therefore crucial to quantify cavitation activity as a function of the process parameters. At 1 MHz, the active cavitation bubbles are so small that it is becoming difficult to observe them in a direct way. Hence, another metrology based on secondary effects of acoustic cavitation is more suitable to study cavitation activity. In this paper we present a detailed analysis of acoustic cavitation phenomena at 1 MHz ultrasound by means of time-resolved measurements of sonoluminescence, cavitation noise, and synchronized high-speed stroboscopic Schlieren imaging. It is shown that a correlation exists between sonoluminescence, and the ultraharmonic and broadband signals extracted from the cavitation noise spectra. The signals can be utilized to characterize different regimes of cavitation activity at different acoustic power densities. When cavitation activity sets on, the aforementioned signals correlate to fluctuations in the Schlieren contrast as well as the number of nucleated bubbles extracted from the Schlieren Images. This additionally proves that signals extracted from cavitation noise spectra truly represent a measure for cavitation activity. The cyclic behavior of cavitation activity is investigated and related to the evolution of the bubble populations in the ultrasonic tank. It is shown that cavitation activity is strongly linked to the occurrence of fast-moving bubbles. The origin of this “bubble streamers” is investigated and their role in the initialization and propagation of cavitation activity throughout the sonicated liquid is discussed. Finally, it is shown that bubble activity can be stabilized and enhanced by the use of pulsed ultrasound by conserving and recycling active bubbles between subsequent pulsing cycles.  相似文献   

13.
Ultrasonic horn transducers are frequently used in applications of acoustic cavitation in liquids. It has been observed that if the horn tip is sufficiently small and driven at high amplitude, cavitation is very strong, and the tip can be covered entirely by the gas/vapor phase for longer time intervals. A peculiar dynamics of the attached cavity can emerge with expansion and collapse at a self-generated frequency in the subharmonic range, i.e. below the acoustic driving frequency. The term “acoustic supercavitation” was proposed for this type of cavitation Žnidarčič et al. (2014) [1].We tested several established hydrodynamic cavitation models on this problem, but none of them was able to correctly predict the flow features. As a specific characteristic of such acoustic cavitation problems lies in the rapidly changing driving pressures, we present an improved approach to cavitation modeling, which does not neglect the second derivatives in the Rayleigh–Plesset equation. Comparison with measurements of acoustic supercavitation at an ultrasonic horn of 20 kHz frequency revealed a good agreement in terms of cavity dynamics, cavity volume and emitted pressure pulsations.The newly developed cavitation model is particularly suited for simulation of cavitating flow in highly fluctuating driving pressure fields.  相似文献   

14.
Acoustic cavitation in a liquid medium generates several physical and chemical effects. The oscillation and collapse of cavitation bubbles, driven at low ultrasonic frequencies (e.g., 20 kHz), can generate strong shear forces, microjets, microstreaming and shockwaves. Such strong physical forces have been used in cleaning and flux improvement of ultrafiltration processes. These physical effects have also been shown to deactivate pathogens. The efficiency of deactivation of pathogens is not only dependent on ultrasonic experimental parameters, but also on the properties of the pathogens themselves. Bacteria with thick shell wall are found to be resistant to ultrasonic deactivation process. Some evidence does suggest that the chemical effects (radicals) of acoustic cavitation are also effective in deactivating pathogens. Another aspect of cleaning, namely, purification of water contaminated with organic and inorganic pollutants, has also been discussed in detail. Strong oxidising agents produced within acoustic cavitation bubbles could be used to degrade organic pollutants and convert toxic inorganic pollutants to less harmful substances. The effect of ultrasonic frequency and surface activity of solutes on the sonochemical degradation efficiency has also been discussed in this overview.  相似文献   

15.
Lin S  Zhang F 《Ultrasonics》2000,37(8):549-554
In this paper, an improved method for the measurement of acoustic power and electro-acoustic efficiency of high power ultrasonic transducers is presented. The measuring principle is described, the experimental results are given. In comparison with traditional methods, the method presented in this paper has the advantages of simplicity, economy and practicality. The most important is that it can measure the output acoustic power and the electro-acoustic efficiency of the transducer under the condition of high power and practical applications, such as ultrasonic cleaning and soldering.  相似文献   

16.
An acoustic backscattering technique for detecting transient cavitation produced by 10-microseconds-long pulses of 757-kHz ultrasound is described. The system employs 10-microseconds-long, 30-MHz center frequency tone bursts that scatter from cavitation microbubbles. Experiments were performed with suspensions of hydrophobic polystyrene spheres in ultraclean water. Transient cavitation threshold pressures measured with the active cavitation detector (ACD) were always less than or equal to those measured using a passive acoustic detection scheme. The measured cavitation thresholds decreased with increasing dissolved gas content and increasing suspended particle concentration. Results also show that ultrasonic irradiation of the polystyrene sphere suspensions by the ACD lowered the threshold pressure measured with the passive detector. A possible mechanism through which suspensions of hydrophobic particles might nucleate bubbles is presented.  相似文献   

17.
Ultrasound is an emerging and promising method for demulsification, which is highly affected by acoustic parameters and emulsion properties. Herein, a series of microscopic and dehydration experiments are carried out to investigate the parameter optimization of ultrasonic separation. The results show that the optimal acoustic parameters highly depend on the emulsion properties. For low frequency ultrasonic standing waves (USWs), mechanical vibrations not only facilitate droplet collision and coalescence, but also disperse the surfactant absorbed on the interface to decrease the interfacial strength. Therefore, low frequency ultrasound is suitable for separating emulsions with high viscosity and high interfacial strength. Increasing the energy density to produce moderate cavitation can increase demulsification efficiency. However, excessive cavitation results in secondary emulsification. In high frequency USWs, the droplets migrate directionally and form bandings, thereby promoting droplet coalescence. Therefore, high frequency ultrasound is favorable for separating emulsions with low dispersed phase content and small droplet size. Increasing the energy density can accelerate the aggregation of droplets, however, excessive energy density causes acoustic streaming that disturbs the aggregated droplets, resulting in reduced demulsification efficiency. This work presents rules for acoustic parameter optimization, further advancing industrial applications of ultrasonic separation.  相似文献   

18.
The dynamics, stabilization, and acoustic spectra of a bubble cluster in different liquids are investigated under the condition of ultrasonic cavitation. Experimental data for the dynamics of a spherical ultrasonic cluster near the end face of a rod, capillary, or pressure sensor placed in the antinode of a pressure standing wave at the center of a single-wave spherical piezoelectric concentrator (piezoelectric sphere) are presented. The variation of the cluster size with the parameters of the ultrasonic field and properties of the liquid is studied. It is found that the shape, collapse dynamics, and stability of the cavitation cluster have a significant influence on the acoustocapillary effect. It is shown that the maximal acoustocapillary effect and sonoluminescence are observed when a stable cluster with spherically symmetric collapse dynamics is provided at the end of a capillary in a 50% solution of glycerol. Using a small-size piezotransducer placed at the center of the sphere, the acoustic pressure is measured and acoustic spectra are studied for different voltages across the piezosphere and during the formation of variously shaped cavitation clusters. In the case of fully developed cavitation and a spherical cluster, the acoustic spectra contain subharmonic components, the cavitation noise factor rises to 35%, and the maximum of the noise envelope shifts toward higher frequencies.  相似文献   

19.
The results of ultrasonic action to the substances have been presented. It is examined, the correlation between the electrical parameters of ultrasonic equipment and acoustic performances of the ultrasonic field in treating the medium, the efficiency of ultrasonic technological facility, and the peculiarities of oscillations introduced into the load under cavitation development. The correlation between the acoustic powers of oscillations securing the needed level of cavitation and desired technological effect, and the electrical parameters of the ultrasonic facility, first of all, the power, is established. The peculiarities of cavitation development in liquids with different physical-chemical properties (including the molten low-melting metals) have been studied, and the acoustic power of oscillations introduced into the load under input variation of electric power to the generator has been also estimated.  相似文献   

20.
匹配层和背衬层是换能器的重要组成部分,对换能器特性有重要影响。针对发射型换能器,基于有/无匹配层和空气/树脂背衬两种条件组合,该文研究了匹配层与背衬层对换能器辐射特性的影响。结果表明,负载材料为水时,空气背衬换能器相较于树脂背衬换能器声能辐射效率更高;匹配层可以提高换能器的主瓣能量,抑制旁瓣能量及旁瓣数量。因此,针对发射型换能器的设计,背衬材料的选择应遵循与压电材料的阻抗差异越大越优的原则;匹配层的合理设计不仅可以提高超声换能器的声能辐射效率,还可以提高主瓣旁瓣峰值比,使声能更集中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号