首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The electronic and crystal structures of SrMgF4 single crystals grown by the Bridgman method have been investigated. The undoped SrMgF4 single crystals have been studied using low-temperature (T = 10 K) time-resolved fluorescence optical and vacuum ultraviolet spectroscopy under selective excitation by synchrotron radiation (3.7–36.0 eV). Based on the measured reflectivity spectra and calculated spectra of the optical constants, the following parameters of the electronic structure have been determined for the first time: the minimum energy of interband transitions E g = 12.55 eV, the position of the first exciton peak E n = 1 = 11.37 eV, the position of the maximum of the “exciton” luminescence excitation band at 10.7 eV, and the position of the fundamental absorption edge at 10.3 eV. It has been found that photoluminescence excitation occurs predominantly in the region of the low-energy fundamental absorption edge of the crystal and that, at energies above E g , the energy transfer from the matrix to luminescence centers is inefficient. The exciton migration is the main excitation channel of photoluminescence bands at 2.6–3.3 and 3.3–4.2 eV. The direct photoexcitation is characteristic of photoluminescence from defects at 1.8–2.6 and 4.2–5.5 eV.  相似文献   

2.
The temperature dependence of the fundamental absorption edge in CuGaSe2 single crystals was determined in the temperature range from 15 to 300 K. Above about 120 K the gap energy changes linearly with temperature with dEg/dT = ? (2.1 ± 0.1) eV K?1. The downshift in dEg/dT of the I–III–VI2 compounds compared to their II–VI analogs is discussed accounting for the p-d hybridization of the uppermost valence band.  相似文献   

3.
The electron absorption spectrum of thin stochiometric Ag2CdI4 films produced by thermal vacuum deposition on a quartz substrate in is investigated. The spectrum shape is sensitive to the method of preparation (the substrate temperature and deposition rate). Under optimal preparation conditions, the films are free of AgI and CdI2 impurities and the fundamental absorption edge is at 3.28 eV. The long-wavelength exciton A band at 3.31 eV (90 K) is associated with the excitation of excitons in the AgI sublattice of the compound. An investigation of the temperature dependence of the spectral position and half-width of the A band in the range 90–430 K revealed that the exciton-phonon interaction makes the major contribution to the broadening of the band at T ≤360 K. At higher temperatures, the contribution associated with the generation of Frenkel defects with activation energy U F=0.200±0.025 eV appears.  相似文献   

4.
Optical absorption in MnIn2S4 single crystals has been studied. Direct and indirect optical transitions are found to occur at photon energies of 1.90?C2.16 eV in the temperature range of 80?C342 K. The temperature dependence of the band gap is determined; its temperature coefficients E gd and E gi are found to be ?4.84 × 10?4 and ?6.33 × 10?4 eV/K, respectively. The electron-phonon interaction is the main mechanism of the temperature shift of the intrinsic-absorption edge. MnIn2S4 single crystals exhibit anisotropy in polarized light at the absorption edge in the temperature range of 90?C190 K; the nature of this anisotropy is explained.  相似文献   

5.
We have observed the modulated reflectance spectra of n and p type GaSb at 300, 80, and 5 K from 0.56 to 2 eV. The modulated reflectance of intrinsic n type InSb was measured at 80 K from 0.2 to 2 eV. The “dry sandwich” vapor deposition technique was used to make the electroreflectance (ER) samples. The low-temperature spectrum of the undoped p type GaSb sample shows three peaks at the band edge that could be associated with transitions from the top of the valence band, the light (0.903 eV) and heavy (1.014eV) hole state Fermi levels to the conduction band. The energies of the observed peaks are in agreement with the Fermi level determination from Hall effect and Faraday rotation measurements. This modulation mechanism is based on band population effects. The ER signal of InSb under flatband condition at 80 K has five half oscillations at the direct band gap. The contribution of piezoelectric strain to ER is present since the dc bias required to achieve flatband condition is different at the band gap than at E1. The ER signal corresponding to the direct gap energy E0 and to the spin-orbit energy E0 + Δ0 was determined in the n and p type samples of GaSb at different temperatures. We have measured the intrinsic energy gap in GaSb at room temperature. Eg = 0.74 eV. The corresponding spin-orbit splitting was found to be Δ0 = 0.733 ± 0.002 eV.  相似文献   

6.
The optical spectrum of the helical antiferromagnetic compound MnAu2(tN = 90°C) has been measured, using a scanning ellipsometric method, in UHV, between 0.47 and 5.7 eV, at temperatures ranging from 88 to 700 K. Below 0.6 eV the experimental data can be fitted to a Drude-like intraband model. The maximum of the interband absorption occurs at 5.1 eV, while the onset of interband absorption may be placed at 0?.4eV as is suggested by the rapid rise of ε2(ω)λ. below 0.5 eV. In the absence of theoretical work, the analysis of the optical spectrum leads to a preliminary rough model of the electronic structure; the proposed local density of d states is represented. The 5.1eV peak is attributed to dEF transitions (parabolic edge at 2.7 eV similar to Au), originating in the lower part of the band, associated mainly with Au sites. To account for the moment (3.6μSat Mn), the upper d band (mainly Mn sites) is split: the d↑ band is below EF (interband edge at 0.4eV), while the d↓ band contains 1.4 electrons. ESCA measurements tend to confirm this model. An important unusual fact is the sharp anomaly of /~ε(ω) in the infrared, around TN; attempts to correlate this with magnetic (s-d) interactions have been initiated.  相似文献   

7.
Absorption measurements were made on single crystals and thin films of Zn3As2; within the photon energy range of 0.12–1.16 eV at temperatures of 300, 80 and 5 K and reflectivity was measured in the range of 1.0–5.5 eV at 300 K. Absorption below the fundamental edge has been interpreted as a process involving three mechanisms: (i) free-carrier absorption, (ii) intraband transitions between levels in the valence band, and (iii) direct transitions from valence levels to the acceptor level/band. The fundamental absorption edge has been ascribed to direct interband transitions from three valence levels to one conduction level. An isotropic three-level Kane band model has been used to interpret the experimental data, modified by introducing the light-hole level split from the heavy-hole level due to the tetragonal crystal field. A reasonable fit of the model to the experimental results has been obtained in the region of both intraband and interband absorption for the following set of parameters: Eg = 0.985 eV, ΔSO = 0.30 eV, ΔCF = 0.05 eV, m*hh = 0.36 m0 and P = 4 × 10?10eVm (at 300 K). A proposed Zn3As2 energy-band model near the Γ point is described to interpret the observed absorption.  相似文献   

8.
Small single crystals of the transparent ferromagnet Eu3SiO5 have been synthesized by high temperature chemical transport. Magnetic measurements indicate Tc = 9°K and a saturation magnetization very close to 7 μB/Eu ion. Crystalline samples show a very low residual optical absorption and an absorption edge near 2 eV which displays a small red shift of 20 meV on cooling below Tc. Samples, containing a small percentage of dissolved EuO clusters, show in addition an absorption band at lower energies with a temperature dependence and magnetic behavior typical for EuO. The photoluminescence of the pure compound has a single emission band near 1·9 eV with a high quantum yield. At low temperatures also the fluorescence displays a red shift similar to that of the absorption edge. The fluorescence is accompanied with photoconductivity.  相似文献   

9.
Wavelength-modulation spectroscopy is used to obtain the temperature dependence of the near band gap reflectivity spectrum Eo of MgxZn1?xTe ternary semiconducting alloys. Results are given in the range 80–100 K for the cubic materials: 0〈x〈0.5. The analysis of the line shapes as a function of x and T confirms the hypothesis of an exciton bound to the complex defect associated with zinc vacancy, as ZnTe. The Eo(x) curve is parabolic. The bowing parameter is C=0.45 ± 0.1 eV at 80 K, C=0.6 ± 0.1 eV at 300 K. Within experimental scattering the temperature coefficient dE0dT is nearly constant with x:-4.5±0.3 × 10?4eVK?1. This data is smaller than the value calculated in the literature for ZnTe from pseudo potential method.  相似文献   

10.
The theory of optical absorption due to transitions between a valence band and a hydrogen-like local level associated with a conduction band is modified to permit an arbitrary power-law dependence of energy on the magnitude of the wave-vector of carriers in the valence band. The observed absorption for photon energies below 1.6 eV in the ferromagnetic semiconductor CdCr2Se4 is discussed in terms of a combination of two types of terms. The first type of absorption is due to transitions to a local level from a band with two branches, in each of which there is an energy region with a width of 0.28 eV or more beginning 0.10–0.16 eV from the band edge, in which the energy measured from some origin near but not necessarily equal to the band-edge is approximately proportional to (wave-vector)(13). The second type of absorption has a dependence on photon energy ?ω of the form (?ω ? E3)2, where E3 is a threshold energy probably connected with indirect transitions between bands as suggested by Sakai, Sugano and Okabe. After constraints on parameters appearing in the theory are imposed by use of results of these authors and of Shepherd, it is found that curves of Harbeke and Lehmann on optical absorption in CdCr2Se4 at 4.2, 78, 130 and 298 K in the photon-energy range 1.14–1.42 eV can be fitted to a mean accuracy of 3%, using an average of 3.75 adjustable parameters for each curve. The strength of the indirect band-to-band absorption does not have the temperature dependence expected for phonon-assisted indirect band-to-band transitions, but can be described by a term independent of temperature plus another term proportional to the square of the deviation of the magnetization from saturation. The fitting of the absorption curves requires that the ratio of the widths of the two branches of the bands varies from about 1.6 at low temperatures to 1.35 at 298 K and that the total width of the bands involved is less than 1 eV.  相似文献   

11.
The absorption edge of undoped Tl2Ga2S3Se crystals have been studied through transmission and reflection measurements in the wavelength range 440–1100 nm and in the temperature range 10–300 K. The absorption edge was observed to shift toward lower energy values with increasing temperature. As a result, the rate of the indirect band gap variation with temperature γ=−2.6×10−4 eV/K and the absolute zero value of the band gap energy Egi(0)=2.42 eV were obtained.  相似文献   

12.
The efficiency of formation and time evolution of radiation-induced structural defects and pulsed luminescence in KPb2Cl5 crystals under the action of a single electron pulse (E = 250 keV, τ = 20 ns) have been investigated. The spectra (1.1–3.8 eV) and relaxation kinetics (time interval 5 × 10?8?5 s) of transient optical absorption and the pulsed cathodoluminescence spectra and decay kinetics (1.4–3.1 eV) have been measured in the temperature range 80–300 K. It is revealed that the induced optical density and its time evolution depend strongly on temperature, and the absorption relaxation time contains several components and reaches several seconds at T = 300 K. The decay kinetics of transient absorption and pulsed cathodoluminescence kinetics have different orders and are controlled by different relaxation processes.  相似文献   

13.
By simultaneous evaporation of LiI and Li onto a cooled substrate F centers can be produced in the hexagonal (78 K<T K <200 K) and amorphous (T K <78 K) phase of one and the same salt. In both modifications there exist two types of centers F and F*. The F* center differs from the cubic F center (T d -symmetry) by a nearby Frenkel defect. In hexagonal films the normal F band peaks at 2.58 eV, whereas the transitions of the F* center appear at 2.92 and 2.58 eV too. Polarized irradiation at 20 K causes a dichroic behaviour of the F* centers. Both types of centers can be transformed into one another photochemically. In the amorphous phase all transitions are shifted to lower energies by about 0.1 eV. After the phase change amorphous→hexagonal the absorption bands shift back by the same amount of energy. AboveT K =230 K the excess metal forms colloids. The absorption bands are due to colloidal centers embedded in the crystalline material (2.25 eV) and films adsorbed to the crystallites (3.1 eV), respectively. By annealing a particle growth can be observed. After electrolytic colouration cubic single crystals of LiI exhibit an absorption band peaking at 2.36 eV. However, it is not yet sure, if this band is allowed to be ascribed to F centers.  相似文献   

14.
Low-temperature photoluminescence (PL) of unactivated KDP crystals under selective synchrotron excitation is for the first time measured with subnanosecond time resolution. Time-resolved PL (2–6 eV) and PL excitation (4–35 eV) spectra, as well as PL kinetics, are measured at 7 K. From the acquired experimental data, luminescent bands related to intrinsic defects of the KDP lattice are identified; in particular, the long-wave band at 2.6 eV is assigned to L defects, and the band at 3.5–3.6 eV is attributed to D defects. An efficient energy transfer over the hydrogen sublattice is shown to take place in KDP at low temperatures. It results in the efficient excitation of L and D center photoluminescence in the fundamental absorption region, at electron transitions to the bottom levels of the conduction band, corresponding to the states of the hydrogen atom. The band gap E g is evaluated to be 8.0–8.8 eV.  相似文献   

15.
Faraday effect, absorption coefficient and Hall effect have been examined in Cr doped PbTe single crystals. The effective masses of carriers mF and then values of effective masses at the bottom of conductivity band mF(0) have been calculated. It is shown that mF in Cr doped PbTe is comparable with mF in n-type PbTe not doped with chromium, with the same free carrier concentration, and the relative temperature variation of mF(0) corresponds to relative variation of Eg. In the absorption spectrum the additional absorption maximum is found at the energy 0.11–0.14 eV. The long-wave side of the peak is shifted towards longer waves as the temperature is increased. Calculation shows that chromium level is located in the conduction band at ΔE = 0.11 eV in the limit T → 0, and is shifted down towards the bottom of the conduction band with a constant rate of 0.8 × 10?4eVK within the temperature range of 4.4–300 K and 3.3 × 10?4eVK within the temperature range 300–800 K.  相似文献   

16.
Ground and excited states of three exciton series are observed in the region of fundamental absorption edge of AgAsS2 crystals. The contours of exciton reflection spectra are calculated and the main parameters of excitons and energy bands are determined in the center of Brillouin zone. The optical reflection spectra are investigated at 30 K in Ec and Ec polarizations in AgAsS2 crystals in the region of 2-6 eV. The optical functions are calculated from the reflection spectra and a scheme of electronic transitions responsible for peculiarities of reflection spectra deep into the absorption band is proposed.  相似文献   

17.
The absorption coefficient of α-AlB12 was measured on single crystal samples at T=300 K within a broad spectral region (0.6–25 μm). In the region of the transparency window (3–6 μm), the absorption coefficient was measured in the temperature range from 165 to 650 K. An analysis of the experimental data shows that the energy spectrum of local states in the α-AlB12 bandgap has certain features. It was established that a broad band of local states lies near the conduction band and that a trap level is located at 0.11±0.02 eV from the top of the valence band. __________ Translated from Fizika Tverdogo Tela, Vol. 43, No. 9, 2001, pp. 1573–1574. Original Russian Text Copyright ? 2001 by Zaitsev, Fedorov, Golikova, Orlov. Deceased.  相似文献   

18.
The luminescence spectra of a KZnF3: Tl+ crystal are investigated in the energy range from 4.75 to 5.9 eV at temperatures of 10–300 K upon excitation into the A absorption band (5.7–6.3 eV). At T=300 K, the luminescence spectra exhibit an intense band with a maximum at 5.45 eV, which is attributed to single Tl+ ions substituted for K+ ions. The 5.723-eV intense narrow band observed at T<20 K is assigned to the 3Γ1u-1Γ1g zero-phonon transition, which is weakly allowed by the hyperfine interaction. The luminescence decay is studied as a function of temperature. The main characteristics of the luminescence spectra are adequately described in terms of the semiclassical theory based on the Franck-Condon principle and the Jahn-Teller effect for an excited sp configuration of the Tl+ ion with the use of the parameters obtained earlier from analyzing the absorption spectra of the system under investigation.  相似文献   

19.
The anisotropy of the optical properties of a single crystal of the hexagonal manganite HoMnO3 has been investigated by spectroscopic ellipsometry in the spectral range 0.6–5.0 eV. It has been demonstrated that the optical absorption edge for the polarization Ec is determined by the intense narrow transition O(2p) → Mn(3d) centered at 1.5 eV, whereas this transition for the polarization Ec is strongly suppressed and shifted toward higher energies by 0.2 eV. It has been revealed that, at the temperature T = 293 K, the spectra for both polarizations Ec and Ec exhibit a broad absorption band centered at ∼2.4 eV, which was earlier observed in nonlinear spectra during optical second harmonic generation.  相似文献   

20.
Tunneling measurements of dI/dV, d 2 I/dV 2, and d 3 I/dV 3 were formed along the C 3 axis (normally to layers) for Bi2Te3 and Sb2Te3 layered semiconductors in the temperature range 4.2<T>29 5 K. Temperature dependences of the forbidden band energy E g were obtained. The forbidden band energy in Bi2Te3 was 0.20 eV at room temperature and increased to 0.24 eV at T=4.2 K. The E g value for Sb2Te3 was 0.25 eV at 295 K and 0.26 eV at 4.2 K. The distance between the top of the higher valence band of light holes and the top of the valence band of heavy holes situated lower was found to be ΔE V≈19 meV in Bi2Te3; this distance was independent of temperature. The conduction bands of Bi2Te3 and Sb2Te3 each contain two extrema with distances between them of ΔE c≈25 and 30 meV, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号