首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the available zoon above the catalyst bed on the performance of the catalyst were investigated. It has been suggested that propylene is an intermediate species in the reaction of propane to acrolein, and a two-step reaction scheme is proposed, the first step is oxidative dehydrogenation of propane to propylene in the gas phase then followed by the second step, the selective oxidation of propylene to acrolein on the surface of the catalyst. The performance of the catalyst depends on both the oxidative dehydrogenation of propane to propylene in the gas phase and the selective oxidation of propylene to acrolein on the catalyst surface. The thermal cracking, homogeneous oxidative dehydrogenation and heterogeneous catalytic dehydrogenation of propane as well as the selective catalytic oxidation of propane to acrolein over BiMoO based mixed oxides catalysts were studied. Under the optimum reaction conditions of propane dehydrogenation and selective oxidation of propylene, the selectivity and the yield of acrolein approached to 45mol% and 14mol%, respectively under about 30mol% propane conversion.  相似文献   

2.
Porous structure is studied by standard contact porosimetry after each stage in the preparation of a catalyst layer, which contains a carbon substrate (CS), an ionomer in the form of Nafion resin, and a platinum catalyst. The influence of the ionomer on the porous structure of ten different CS is investigated. The structure of these samples is studied over the maximum range of their pore radii r ∼ 0.3–105 nm. Pores of main volume within particles of the CS under investigation are mainly distributed over the maximum range of their radii from r ≤ 1 to ∼ 50 nm. Ionomer introduction into all the CS under investigation leads to an increase in the integral porosity due to the porosity of the intergranular structure. The change in porosity of the intragranular structure is caused by ionomer blocking small pores in the CS. In most CS, ionomer blocks pores of different sizes, from micropores with radii r ≤ 1 nm and up to r ∼ 1000 nm. It is concluded that the extent of blockage of CS pores is largely determined by the surface properties of the CS and Nafion resin and, more precisely, by the difference in resin adhesion to the CS surface because of the presence of different surface groups on the CS surface. When platinum is applied to CS, this leads to an increase in the specific volume of the micropores. The smallest dimensions of platinum particles are estimated to be on the order of 1 nm.  相似文献   

3.
Dehydrogenation of propane to propylene over zinc oxide catalysts supported on steaming‐treated HZSM‐5 in the presence of CO2 has been investigated. The highest catalytic performance can be achieved on the 5%ZnO/HZSM‐5(650) catalyst with the HZSM‐5 support steaming at 650°C, which allows the maximum propylene yields of 29.7% and 20.3% at the initial and steady states, respectively, in the catalytic dehydrogenation of propane at 600°C. The superior catalytic performance of this catalyst can be attributed to high dispersion of ZnO and appropriate Br?nsted acidity of the HZSM‐5(650) support. The catalytic stability is enhanced by the addition of CO2 to the feed gas due to the suppression of coke formation.  相似文献   

4.
Reaction kinetics and proposed mechanism for the oxidation of propane over diluted Mo1–V0.3–Te0.23–Nb0.125–O x are described. The kinetic study allowed determination of the orders of propane disappearance, propene formation, CO x formation, and acids formation. The results show that selective oxidation of propane to propylene over this catalyst follows the Langmuir-Hinshelwood mechanism. Deep oxidation of propane to carbon dioxide is first order with respect to hydrocarbon, and partial order (0.21) with respect to oxygen. The selective oxidation of propane to acrylic acid is half order with respect to hydrocarbon and partial order (0.11) with respect to oxygen, while water does not participate directly in propane transformation. The result also shows that the overall reaction consists of three parallel process channels. One main sequence of consecutive reactions leads to the desired product.  相似文献   

5.
The formation of the structure of titanium dioxide modified with silicon dioxide, which was introduced as tetraethyl orthosilicate, was studied. It was found that the formation of the nanocrystalline structure of TiO2 occurred upon the modification of titanium dioxide with silicon dioxide. This nanocrystalline structure of TiO2 was formed by highly dispersed anatase particles of size 6–10 nm stabilized by silicon oxide layers, which were formed upon the decomposition of tetraethyl orthosilicate. An increase in the modifier concentration resulted in a deceleration of the growth of anatase particles and an increase in the temperature of the phase transition of anatase to rutile. It was found that the anatase phase in the samples containing 5–15 wt % SiO2 was stable up to 1000°C. The stabilization of highly dispersed anatase particles facilitated the retention of the developed fine-pore structure of xerogels with a pore diameter of 4 nm up to 900°C.  相似文献   

6.
The reaction of histamine and histidine with various hetarylaldehydes under the conditions of the base-catalyzed Pictet-Spengler process affords 4-hetaryl-substituted derivatives of spinaceamine and spinacine. The dehydrogenation of the 4-hetaryl-substituted spinaceamine derivatives using elemental sulfur in DMF at 120–130°C led to the formation of 4-hetaryl derivatives of imidazo[4,5-c]-pyridine. Under similar conditions the 4-hetaryl-substituted spinacine derivatives suffered both the dehydrogenation and oxidative decarboxylation resulting in the products identical to the compounds obtained by the dehydrogenation of 4-hetaryl-substituted spinaceamine.  相似文献   

7.
The reaction kinetics of the oxidative dehydrogenation of propane was studied at 475-550oC over a VMgO catalyst. Vanadium-magnesium-oxides are among the most selective and active catalysts for the dehydrogenation of propane to propylene. Selectivity to propylene up to about 60% was obtained at 10% conversion, but the selectivity decreased with increasing conversion. No oxygenates were detected, the only by-products were CO and CO2. The reaction rate of propane was found to be first order in propane and close to zero order in oxygen, which is in agreement with a Mars van Krevelen mechanism with the activation of the hydrocarbon as the rate determining step. The activation energy of the conversion of propane was found to be 122±6 kJ/mol.  相似文献   

8.
Mesoporous Ni hydroxynitrates were synthesized from a hydrothermal mixture of Ni nitrate, octylamine as the surfactant, ethanol and water at 25–100 °C for 24 h. Mesoporous Ni oxides were obtained by calcining the Ni hydroxynitrates in air at temperatures ranging from 200 to 500 °C for 2 h. The mesoporous Ni oxides have crystalline walls, a high surface area of 133 m2/g at 350 °C, high porosity up to 0.61 cm3/g, and a bimodal mesopore size distribution, with pores roughly 2 and 10–25 nm in diameter. With an increase in the synthesis temperature, the size of the larger pores and the total pore volume of the mesoporous Ni oxide increase, while the surface area decreases slightly from 133 (25 °C) to 111 m2/g (100 °C).  相似文献   

9.
The reaction of propane dehydrogenation on platinum–tin catalysts supported onto different woven carriers (an aluminoborosilicate and two silica materials) was studied. It was found that the catalyst was rapidly deactivated by carbon deposits formed, and the rate of this reaction increased with the specific surface area of the glass-fiber woven material and the Pt content. It was established that the Pt: Sn ratio in surface platinum particles was about 6, and it increased to 39 after the reaction; this fact is indicative of a Sn loss, which led to an increase in the conversion of feed into carbon deposits that deactivated the catalyst. A mixture of propane and 5–10 vol % H2 should be used for the stabilization of the catalytic system; in this case, the negative effect of hydrogen on the yield of propylene was minimal. On the catalyst supported onto a silica carrier under optimum conditions (550°C; propane space velocity, 480 h–1), which correspond to minimum selectivity for the formation of carbon deposits, the yield of propylene was ~18%. The test glass-fiber woven catalyst was inferior to granulated platinum–tin catalysts in terms of catalytic activity; therefore, its use in the reaction of propane dehydrogenation is inexpedient.  相似文献   

10.
The prerequisites and prospects for creating a new generation of nanosized membrane reactors are considered. For the first time, hydrogenation reactions take place in ceramic membrane pores with hydrogen adsorbed beforehand in mono- and multilayered oriented carbon nanotubes with graphene walls (OCNTGs) formed on the internal pore surface. It is shown for Trumem microfiltration membranes with D avg ∼130 nm that oxidation reactions of CO on a Cu0.03Ti0.97O2 ± δ catalyst and the oxidative conversion of methane into synthesis gas and light hydrocarbons on La + Ce/MgO are considerably enhanced when they occur in membranes. Regularities of hydrogen adsorption, storage, and desorption in nanosized membrane reactors are investigated through OCNTG formation in Trumem ultrafiltration membrane pores with D avg = 50 and 90 nm and their saturation with hydrogen at a pressure of 10–13 MPa. It is shown that the amount of adsorbed hydrogen reaches 14.0% of OCNTG mass. Using thermogravimetric analysis in combination with mass-spectrometric analysis, hydrogen adsorption in OCNTG is first determined and its desorption is found to proceed at atmospheric pressure at a temperature of ∼175°C. It is shown that adsorbed hydrogen affects the transport properties of the membranes, reducing their efficiency with respect to liquids by 4–26 times. This is indirect confirmation of its high activity, due apparently the dissociative mechanism of adsorption.  相似文献   

11.
A series of porous anodic alumina has been prepared by anodizing aluminum surface in 0.3 M oxalic acid at different voltages. Prior to anodizing, the surface was pretreated in two different electropolishing electrolytes. One was Brytal solution (15% Na2CO3 and 5% Na3PO4) at 80 °C in which the electropolishing was performed at 2 V. This resulted in about 100–150 nm apart random features of 4–5 nm height. The other was the commonly employed perchloric acid–alcohol solution (1:4 ratio by volume), in which the electropolishing was performed at 20 V. The resulting surface comprised nanostripes of 1–2 nm amplitude with a wavelength of about 50 nm. The former pretreatment proved better for self-ordering of the pores at the anodizing voltage of 50–60 V, while the latter pretreatment was found better at the anodizing voltage of 40 V. The improved pore ordering at a given voltage was attributed to the higher pore density as associated with greater repulsive interactions among the pores.  相似文献   

12.
The reaction kinetics of the oxidative dehydrogenation of propane was studied at 475-550℃over a VMgO catalyst. Vanadium-magnesium-oxides are among the most selective and active catalysts forthe dehydrogenation of propane to propylene. Selectivity to propylene up to about 60% was obtained at10% conversion, but the selectivity decreased with increasing conversion. No oxygenates were detected, theonly by-products were CO and CO2. The reaction rate of propane was found to be first order in propaneand close to zero order in oxygen, which is in agreement with a Mars van Krevelen mechanism with theactivation of the hydrocarbon as the rate determining step. The activation energy of the conversion ofpropane was found to be 122±6 kJ/mol.  相似文献   

13.
Novel thermally stable mesoporous mixed metal Nb-M (M = V, Mo and Sb) oxides were synthesized in the presence of a nonionic Pluronic P123 surfactant. These oxides displayed promising pore structures and chemical compositions for selective oxidative functionalization of propane: high surface areas (up to 200 m2/g), large pore sizes (5-14 nm), and high pore volumes (up to 0.46 cm3/g). The oxidative dehydrogenation of propane to propylene over mesoporous mixed metal Nb-M oxides employed as a probe reaction suggested that the M component was dispersed as the molecular surface species and also formed a solid solution with NbOx in the inorganic walls of these mesoporous mixed metal oxides.  相似文献   

14.
Summary.  Selective decomposition of ethanol was used as a test reaction at 350°C to evaluate the catalytic activity of two Al–Mg–O mixed oxides prepared by two different methods (wet impregnation and coprecipitation). The catalyst precursors were examined by TG and DTA and were calcined between 500–900°C for 5 h in air. The surface area of all catalysts was measured by N2 sorption using the BET method. The total acidity and basicity were determined by TPD using pyridine and formic acid. The catalysts were characterized by XRD analysis. It was found that the preparation method of Al–Mg–O catalyst has a great effect on the selective decomposition of ethanol. Al–Mg–O (I) catalysts, prepared by wet impregnation, were more selective towards ethene formation during dehydration of ethanol. This is ascribed to their high total surface acidity. On the other hand, Al–Mg–O (II) catalysts, prepared by coprecipitation, were highly selective in the oxidative dehydrogenation of ethanol to yield acetaldehyde. This could be attributed to their high concentration of basic sites. In addition, the production of traces of diethyl ether was also observed (three times more for Al–Mg–O (II) than for Al–Mg–O (I)). Corresponding author. E-mail: shalawy99@yahoo.com Received October 12, 2001. Accepted (revised) January 7, 2002  相似文献   

15.
The rate laws of propane dehydrogenation involving oxygen on an alumina-chromium catalyst promoted with Co, Ni, Bi, and K oxides were studied. The reaction was carried out in a flow reactor in the temperature range of 560–640°C at residence times of 0.5–2.5 s. A kinetic model of the process according to a probable reaction scheme was proposed. The rate constants and activation energies of individual reactions that participate in the process were found. A mathematical model of the process was developed with consideration for material and heat balances and hydrodynamic conditions. The concentration and temperature fields and pressure along the height of the catalyst bed were calculated. The dependences of the target product yield and process selectivity on the residence time were plotted.  相似文献   

16.
NiMoO4 obtained by calcination of precursors has been shown to be a very effective catalyst for oxidative dehydrogenation of propane into propene. Preparation conditions and thermal decomposition of two precursors have been studied by TG-DTA, HTXRD, FFT-IR, and thermo-desorption coupled to mass spectroscopy in order to determine their composition and to define the best treatment to favour the oxidative dehydrogenation process. The selectivity and activity for propane transformation into propene are very different depending on the nature of the precursor and of the active phases obtained after thermal activation. The more selective high-temperature β phase of NiMoO4 has been obtained at a lower temperature (500°C) than previously reported (700°C).  相似文献   

17.
The effect of silicon-containing catalysts on the pyrolysis of propane-butane hydrocarbon mixture in a flow system was studied in the temperature range 500–850°C, the rate of the gas mixture flow 50–100 ml min−1, contact time 0.1–12.0 s, and the value of the heterogeneity factor 0.1–2.1×107 cm−1. The catalytic activity of different systems under similar conditions was compared, and the influence of various factors on the yield of ethylene and propylene was studied. The most active silicon-containing catalyst for the pyrolysis of propane-butane hydrocarbon mixture was found.  相似文献   

18.
Scaffolds containing dual porosity at the nano and macroscale appear to exhibit improved performance in terms of crystallization of hydroxycarbonate apatite plus cell adhesion and proliferation, as well as vascularization. The aim of the present work is to develop a novel, simple sol–gel process for the preparation of silica-based bioactive porous bone tissue scaffold, with a pore structure consisting of interconnected pores of both 100’s of micrometers and 10’s of nanometers in size, optimized for enhanced bone regeneration performance. SiO2–CaO and SiO2–CaO–P2O5 porous glass monoliths have been prepared with a dual pore structure including pores of both ~50–200 micrometers and a few to 10’s of nanometers in size, based on polymerization-induced phase separation together with the sol-gel transition, by adding a water soluble polymer to the precursor sol. The nanopore (~5–40 nm) structure of such macroporous gel skeletons was tailored by solvent exchange, followed by heat treatment at 600–700 °C. The overall pore structure has been studied by Scanning Electron Microscopy (SEM), N2-adsorption (BET), Mercury intrusion porosimetry and Infrared spectroscopy. The scaffold bioactivity, tested in simulated body fluid, has been demonstrated by means of DRIFTS, SEM and X-ray diffraction measurements.  相似文献   

19.
A novel PtSnNa/ZSM-5 monolithic catalyst was designed and synthesized for the propane dehydrogenation reaction, which was a significant transformation in industry. Experimental results showed that although the propane conversion and the propylene selectivity gradually fell down along with the reaction time, the descent speed of the PtSnNa/ZSM-5 monolithic catalyst was slower than that of the granule catalyst and the propane conversion and propylene selectivity of the reaction with monolithic catalyst still remained at a high level after 12 hr. The monolithic catalyst had regular pore structure that facilitated the separation of the product from the catalyst and reduced the limitation on internal and external diffusion and mass transfer, and led to the high catalytic activity and stability. The catalyst could be easily fabricated and was of highly industrial application potential.  相似文献   

20.
The effect of the deposition of oxidative condensation products in the reaction of oxidative propane dehydrogenation in the presence of SO2 on the catalytic, acid–base, and texture characteristics of silica was studied. It was found that the oxidative condensation products exhibited high catalytic activity in this reaction. The carbonization of silica from 0 to 40 wt % was accompanied by an increase in the yield of propylene from 3.4 to 46 mol % (640°C; a C3H8/SO2/He + N2 mixture, 10 : 10 : 80 vol %). Further accumulation of condensation products resulted in a considerable decrease in the pore volume and radius; this imposed diffusion limitations on both propane conversion and selectivity to propane conversion products. The nature of active and deactivated condensation products was studied by DRIFT spectroscopy, diffuse-reflectance UV–VIS spectroscopy, EPR spectroscopy, XPS, thermal analysis, and electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号