首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
PurposeTo demonstrate the clinical feasibility of a new non-Cartesian cylindrically-distributed spiral 3D pseudo-continuous arterial spin labeling (pCASL) magnetic resonance imaging (MRI) pulse sequence in pediatric patients in quantifying cerebral blood flow (CBF) response to an acetazolamide (ACZ) vasodilator challenge.Materials and methodsMRI exams were performed on two 3 Tesla Philips Ingenia systems using 32 channel head coil arrays. After local institutional review board approval, the 3D spiral-based pCASL technique was added to a standard brain MRI exam and evaluated in 13 pediatric patients (average age: 11.7 ± 6.4 years, range: 1.4–22.2 years). All patients were administered ACZ for clinically indicated reasons. Quantitative whole-brain CBF measurements were computed pre- and post-ACZ to assess cerebrovascular reserve.Results3D spiral pCASL data were successfully reconstructed in all 13 cases. In 11 patients, CBF increased 2.8% to 93.2% after administration of ACZ. In the two remaining patients, CBF decreased by 2.4 to 6.0% after ACZ. The group average change in CBF due to ACZ was approximately 25.0% and individual changes were statistically significant (p < 0.01) in all patients using a paired t-test analysis. CBF perfusion data were diagnostically useful in supporting conventional MR angiography and clinical findings.Conclusion3D cylindrically-distributed spiral pCASL MRI provides a robust approach to assess cerebral blood flow and reserve in pediatric patients.  相似文献   

2.
To describe a method for quantifying patellofemoral joint contact area using magnetic resonance imaging (MRI), we used a repeated measures design using cadaver specimens. The use of contact area obtained from cadaveric specimens for biomechanical modeling does not permit investigators to assess the inter-subject variability in contact area as a result of patellofemoral pathology or malalignment. Therefore, a method for measuring patellofemoral joint contact area in-vivo is necessary. Six fresh frozen unmatched human cadaver knees were thawed at room temperature and minimally dissected to permit insertion of a pressure sensitive film packet into the suprapatellar pouch. A custom loading apparatus was designed to apply a compressive load to the patellofemoral joint at 30 degrees of flexion. Simultaneous measurement of contact area was made using both the pressure sensitive film technique and MRI. The intraclass correlation coefficient (ICC) and coefficient of variation were used to compare the agreement between the two methods and to assess the repeatability of the MRI method. Good agreement was found between the MRI and pressure sensitive film techniques (ICC 0.91; CV 13%). The MRI technique also was found to be highly reproducible (ICC 0.98; CV 2.3%). MRI assessment of patellofemoral joint contact area was found to be comparable to the established pressure sensitive film technique. These results suggest that this method may be a valuable tool in quantifying patellofemoral joint contact area in-vivo. Quantification of the patellofemoral joint stress has been dependent on patellofemoral joint contact area obtained from cadaver specimens, thereby negating the potential influence of subject specific variability. Developing a non-invasive technique to evaluate contact area will assist researchers and/or clinicians in obtaining patient-specific contact area data to be used in biomechanical analyses and clinical decision making.  相似文献   

3.
PurposeThe detection of small parenchymal hepatic lesions identified by preoperative imaging remains a challenge for traditional pathologic methods in large specimens. We developed a magnetic resonance imaging (MRI) compatible localization device for imaging of surgical specimens aimed to improve identification and localization of hepatic lesions ex vivo.Materials and methodsThe device consists of two stationary and one removable MR-visible grids lined with silicone gel, creating an orthogonal 3D matrix for lesion localization. To test the device, five specimens of swine liver with a random number of lesions created by microwave ablation were imaged on a 3 T MR scanner. Two readers independently evaluated lesion coordinates and size, which were then correlated with sectioning guided by MR imaging.ResultsAll lesions (n = 38) were detected at/very close to the expected localization. Inter-reader agreement of lesion localization was almost perfect (0.92). The lesion size estimated by MRI matched macroscopic lesion size in cut specimen (± 2 mm) in 34 and 35, respectively, out of 38 lesions.ConclusionUse of this MR compatible device for ex vivo imaging proved feasible for detection and three-dimensional localization of liver lesions, and has potential to play an important role in the ex vivo examination of surgical specimens in which pathologic correlation is clinically important.  相似文献   

4.

Background and Purpose

A new neurological implant, the Sensor-Reservoir, was developed to provide a relative measurement of ICP, which permits a noninvasive technique to detect and localize occlusions in ventricular drainage systems and, thus, to identify mechanical damage to shunt valves. The “reservoir” of this device can be used to administer medication or a contrast agent, to extract cerebral spinal fluid (CSF), and with the possibility of directly measuring ICP. The Sensor-Reservoir was evaluated to identify possible MRI-related issues at 1.5-T/64-MHz and 3-T/128-MHz.

Materials and Methods

Standard testing techniques were utilized to evaluate magnetic field interactions (i.e., translational attraction and torque), MRI-related heating, and artifacts at 3-T for the Sensor-Reservoir. In addition, 12 samples of the Sensor-Reservoir underwent testing to determine if the function of these devices was affected by exposures to various MRI conditions at 1.5-T/64-MHz and 3-T/128-MHz.

Results

Magnetic field interactions for the Sensor-Reservoir were not substantial. The heating results indicated a highest temperature rise of 1.8 °C, which poses no patient risks. Artifacts were relatively small in relation to the size and shape of the Sensor-Reservoir, but may interfere diagnostically if the area of interest is near the device. All devices were unaffected by exposures to MRI conditions at 1.5-T/64-MHz and 3-T/128-MHz.

Conclusion

When specific guidelines are followed, the Sensor-Reservoir is “MR conditional” for patients undergoing MRI examinations at 3-T or less.  相似文献   

5.
The development of phase-contrast magnetic resonance imaging (P-C MRI) provides a noninvasive method for measurement of volumetric blood flow (VFR). We performed P-C MRI to study the effects of physical characteristics on cerebral blood flow. VFR of the left and right internal carotid arteries and basilar artery were measured using P-C MRI and total cerebral blood flow (tCBF) was calculated by summing up the VFR values in the three vessels. Moreover, we investigated the changes in these blood flows as influenced by age, head size, height, weight, body surface area, and handedness. The blood flows were 142 ± 58 ml/min (mean ± standard deviation) in the basilar artery; and 229 ± 86 ml/min in the left, and 223 ± 58 ml/min in the right internal carotid artery; and tCBF was 617 ± 128 ml/min. Significant increases were observed in head size-related change of VFR in the basilar artery (p = .028) and height-related change of tCBF (p = .045). The other characteristics did not significantly influence any VFR. The results suggest that head size and height may reflect CBF, and that these effects should be considered when changes of CBF are diagnosed. Phase-contrast MRI is useful for a noninvasive and rapid analysis of cerebral VFR and has potential for clinical use.  相似文献   

6.
用近红外光拓扑图技术短期预测脑梗塞   总被引:3,自引:0,他引:3  
本研究用近红外光大脑拓扑图技术(near-infrared cerebral topography, NIRS topography),对大鼠大脑中动脉线栓梗塞模型的皮层缺血部位进行定位成象.我们利用氧合血红蛋白和去氧血红蛋白对近红外光的吸收峰值波长分别为850nm和760nm的原理,制作了NIRS拓扑仪.分别用NIRS拓扑仪、磁共振成象和解剖样本染色对10只SD雄性大鼠大脑皮层缺血部位进行成象.结果表明,NIRS拓扑图所显示的皮层缺血面积与磁共振图象及解剖样本所显示的皮层缺血面积的相关系数分别为0.82(p<0.05)和0.89(p<0.01).  相似文献   

7.

Background  

By mapping the dynamics of brain reorganization, functional magnetic resonance imaging MRI (fMRI) has allowed for significant progress in understanding cerebral plasticity phenomena after a stroke. However, cerebro-vascular diseases can affect blood oxygen level dependent (BOLD) signal. Cerebral autoregulation is a primary function of cerebral hemodynamics, which allows to maintain a relatively constant blood flow despite changes in arterial blood pressure and perfusion pressure. Cerebral autoregulation is reported to become less effective in the early phases post-stroke.  相似文献   

8.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is the most common cause of dementia in aging populations. Although senile plaques and neurofibrillary tangles are well-established hallmarks of AD, changes in cerebral white matter correlate with cognitive decline and may increase the risk of the development of dementia. We used the triple transgenic (3xTg)-AD mouse model of AD, previously used to show that white matter changes precede plaque formation, to test the hypothesis that MRI detectable changes occur in the corpus callosum, external capsule and the fornix. T2-weighted and diffusion tensor magnetic resonance imaging and histological stains were employed to assess white matter in older (11–17 months) 3xTg-AD mice and controls. We found no statistically significant changes in white matter between 3xTg-AD mice and controls, despite well-developed neurofibrillary tangles and beta amyloid immunoreactive plaques. Myelin staining was normal in affected mice. These data suggest that the 3xTg-AD mouse model does not develop MRI detectable white matter changes at the ages we examined.  相似文献   

9.
Autoradiographic studies have shown that low dose ketamine produces increases in regional glucose utilisation and blood flow in the hippocampus, cerebral cortex, and olfactory lobe in the rat brain, probably due to antagonism at the NMDA receptor. Functional MRI using deoxyhaemoglobin contrast can be used to study changes in regional cerebral blood flow (rCBF). Long TE gradient-echo sequences were used to study changes in rCBF produced by low dose ketamine in rats anaesthetised with nitrous oxide, supplemented with either halothane (HAL) or fentanyl/fluanisone/midazolam (FFM) combination. Images from rats in the FFM group showed a 10–14% increase in signal intensity in the hippocampus, cerebral cortex, and olfactory lobe following either a single bolus or a low dose infusion of ketamine (p < .05). These changes were significantly reduced in the HAL group (p < .005). Halothane is known to attenuate the changes in regional glucose utilisation produced by the noncompetitive NMDA antagonist dizocilpine (MK-801), and its effects on ketamine-induced changes in rCBF seen in this study may be due to a similar effect. The potential use of functional MRI in studying the effect of pharmacological interventions on rCBF is discussed.  相似文献   

10.

Purpose

To classify tumor imaging voxels at-risk for treatment failure within the heterogeneous cervical cancer using DCE MRI and determine optimal voxel's DCE threshold values at different treatment time points for early prediction of treatment failure.

Material and Method

DCE-MRI from 102 patients with stage IB2–IVB cervical cancer was obtained at 3 different treatment time points: before (MRI 1) and during treatment (MRI 2 at 2–2.5 weeks and MRI 3 at 4–5 weeks). For each tumor voxel, the plateau signal intensity (SI) was derived from its time-SI curve from the DCE MRI. The optimal SI thresholds to classify the at-risk tumor voxels was determined by the maximal area under the curve using ROC analysis when varies SI value from 1.0 to 3.0 and correlates with treatment outcome.

Results

The optimal SI thresholds for MRI 1, 2 and 3 were 2.2, 2.2 and 2.1 for significant differentiation between local recurrence/control, respectively, and 1.8, 2.1 and 2.2 for death/survival, respectively.

Conclusion

Optimal SI thresholds are clinically validated to quantify at-risk tumor voxels which vary with time. A single universal threshold (SI = 1.9) was identified for all 3 treatment time points and remained significant for the early prediction of treatment failure.  相似文献   

11.

Background and Purpose

Fine-mesh braided, stent-like structures (flow diverters) have been proposed for treatment of brain aneurysms. To date, the safety of performing magnetic resonance imaging (MRI) in patients with these implants is unknown. Therefore, the purpose of this study was to evaluate MRI issues at 3-T for a new flow-diverting implant used to treat brain aneurysms.

Methods

The Surpass NeuroEndoGraft (Surpass Medical, Ltd., Tel Aviv, Israel) underwent evaluation for magnetic field interactions, MRI-related heating and artifacts using standardized techniques. Magnetic field interactions were assessed for this implant with regard to translational attraction (i.e., using the deflection angle technique) and torque (qualitative assessment method). MRI-related heating was evaluated by placing the implant in a gelled-saline-filled, head/torso phantom and performing MRI using a transmit/receive radiofrequency body coil at a whole-body-averaged specific absorption rate of 2.9 W/kg for 15 min. Artifacts were characterized using T1-weighted, spin echo (SE) and gradient echo (GRE) pulse sequences.

Results

The Surpass NeuroEndoGraft exhibited minor magnetic field interactions (21° deflection angle and no torque), which were acceptable from a safety consideration. Heating was not substantial, with the highest temperature change being 2.3°C (background temperature rise without the implant was 1.5°C). Artifacts may create issues if the area of interest is in the same area or close to this implant.

Conclusions

The findings demonstrated that it would be acceptable for patients with this next-generation, flow-diverting implant to undergo MRI at 3-T or less.  相似文献   

12.
The objective of this study is to determine differential diagnostic value of diffusion tensor imaging (DTI) in high-grade brain astrocytomas, brain solitary metastases and brain abscesses. 53 patients with cerebral solitary lesions which showed ring enhancement on contrast-enhanced T 1-weighted images were enrolled in this study. Brain tissues were examined pathologically from 49 patients to confirm the cerebral occupational diseases. Four patients have been diagnosed with primary cancer plus brain solitary metastasis. DTI measurements were obtained from regions of interest placed on central cavity, white matter of the immediate peritumoral region (IPR) and cerebral white matter of the normal side. The cavity of high-grade astrocytoma and brain metastases displayed hypointense signals; most of the brain abscess cavities displayed high signal intensity except for one case with uneven signal intensity. Mean diffusivity (MD) and fractional anisotropy (FA) values could be used for differentiation between tumor and abscess in brain. The brain abscess cavities showed restricted diffusion and anisotropy [MD = (0.604 ± 0.13) × 10−3 mm2/s, FA = 0.185 ± 0.03], whereas the central portion of high-grade astrocytoma [MD = (2.76 ± 0.26) × 10−3 mm2/s, FA = 0.069 ± 0.02] and solitary brain metastases [MD = (2.82 ± 0.29) × 10−3 mm2/s, FA = 0.064 ± 0.02] showed unrestricted diffusion and isotropy. Brain abscess could be differentiated by MD and FA values in their cavities from brain tumors (P < 0.01). The IPRs were all depicted as hyperintense or isointense signals on diffusion-weighted imaging. The difference between FA values in the IPR of high-grade brain astrocytomas and other groups was statistically significant (P < 0.01). In conclusion, our results suggested the potential role of the cavity MD and FA values in the differential diagnoses of brain tumors and brain abscesses; meanwhile, high-grade astrocytomas could be distinguished from solitary metastases and abscesses by evaluating their corresponding FA values in the IPR on brain magnetic resonance imaging (MRI). Combined with conventional MRI, DTI may help radiologists to facilitate the differential diagnosis of ring-enhancing cerebral lesions in clinical practice.  相似文献   

13.

Purpose

To evaluate if Gd-EOB-DTPA-enhanced MRI could identify liver tissue damage caused by radiation exposure in patients undergoing external beam radiation therapy.

Materials and methods

We enrolled 11 patients who underwent Gd-EOB-DTPA-enhanced MRI during or after radiotherapy in which the radiation field included the liver. External beam radiotherapy was delivered through multiple fields using a 10-MV linear accelerator. The hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI were qualitatively evaluated for the presence of a decreased uptake of Gd-EOB-DTPA in the irradiated area in the liver. Next, signal intensity (SI) ratio of the irradiated area to the non-irradiated liver parenchyma was also calculated. The absorbed dose of the irradiated area in the liver was standardized using equivalent dose in 2 Gy fraction (EQD2) and biological effective dose (BED). The results of qualitative analysis were compared with EQD2 or BED, and linear regression analysis was performed between EQD2 or BED and SI ratio.

Results

Twenty-two irradiated areas were evaluated. Qualitative analysis revealed a decreased uptake of Gd-EOB-DTPA in 14 areas and no decreased uptake of Gd-EOB-DTPA in eight areas. The thresholds of EQD2 and BED causing a decreased uptake of Gd-EOB-DTPA were considered to be 24 to 29 Gy and 29 to 35 Gy, respectively. Quantitatively, SI ratio decreased as EQD2 or BED increased (r = 0.89, p < 0.001), and the inverse relationship between signal enhancement and the absorbed dose in the irradiated area was obtained. One area with EQD2 of 50 Gy and BED of 60Gy showed a slightly decreased uptake of Gd-EOB-DTPA on the 40th day but a clearly decreased uptake of Gd-EOB-DTPA on the 123rd day from initiation of radiotherapy.

Conclusions

Gd-EOB-DTPA-enhanced MRI described RLI as a decreased uptake of Gd-EOB-DTPA matching the irradiated area. The occurrence of this finding was significantly correlated with the absorbed dose of the irradiated area in the liver.  相似文献   

14.
The multi-components of T2 relaxation in cartilage and tendon were investigated by microscopic MRI (μMRI) at 13 and 26 μm transverse resolutions. Two imaging protocols were used to quantify T2 relaxation in the specimens, a 5-point sampling and a 60-point sampling. Both multi-exponential and non-negative-least-square (NNLS) fitting methods were used to analyze the μMRI signal. When the imaging voxel size was 6.76 × 10−4 mm3 and within the limit of practical signal-to-noise ratio (SNR) in microscopic imaging experiments, we found that (1) canine tendon has multiple T2 components; (2) bovine nasal cartilage has a single T2 component; and (3) canine articular cartilage has a single T2 component. The T2 profiles from both 5-point and 60-point methods were found to be consistent in articular cartilage. In addition, the depletion of the glycosaminoglycan component in cartilage by the trypsin digestion method was found to result in a 9.81–20.52% increase in T2 relaxation in articular cartilage, depending upon the angle at which the tissue specimen was oriented in the magnetic field.  相似文献   

15.
Myotonic dystrophy type 1 (DM1) is a multisystemic disease involving multiple organ systems including central nervous system (CNS) and muscles. Few studies have focused on the central motor system in DM1, pointing to a subclinical abnormality in the CNS. The aim of our study was to investigate patterns of cerebral activation in DM1 during a motor task using functional MRI (fMRI). Fifteen DM1 patients, aged 20 to 59 years, and 15 controls of comparable age were scanned during a self-paced sequential finger-to-thumb opposition task of their dominant right hand. Functional MRI images were analyzed using SPM99. Patients underwent clinical and genetic assessment; all subjects underwent a conventional MR study. Myotonic dystrophy type 1 patients showed greater activation than controls in bilateral sensorimotor areas and inferior parietal lobules, basal ganglia and thalami, in the ipsilateral premotor area, insula and supplementary motor area (corrected P<.05). Analysis of the interaction between disease and age showed that correlation with age was significantly greater in patients than in controls in bilateral sensorimotor areas and in contralateral parietal areas. Other clinical and MR characteristics did not correlate with fMRI. Functional changes in DM1 may represent compensatory mechanisms such as reorganization and redistribution of functional networks to compensate for ultrastructural and neurochemical changes occurring as part of the accelerated aging process.  相似文献   

16.
The clinical use of magnetic resonance imaging (MRI) and multiphase enhanced computed tomography (CT) with the contrast media (Gd-EOB-DTPA) for detecting hepatic malignant and focal nodules prior to operation was examined based on the receiver operating characteristic (ROC) curve. This study included 70 patients with malignant and focal liver nodules who underwent MRI and multiphase CT scans before operation. Both scans for each patient were conducted within 1 month. For MRI, the T 2-weighted image (single shot fast spin echo) and two-dimensional (2-D) and 3-D T 1-gradient magnetic signals were obtained for all patients before administering the contrast media. The 2-D and 3-D T 1-gradient magnetic signals were obtained in the same location after delivering the contrast media. For the CT scans, images of artery phase, portal phase, and delayed phase were obtained at a thickness of 5 mm or less after administering contrast similar to MRI. An ROC curve was used (paired-samples T test, P < 0.05) to evaluate the images. When the analysis was based on the ROC curve, MRI showed high values (P < 0.05) for area under curve (AUC), sensitivity, and specificity in terms of detection rates of small lesions (less than 2 cm and more than 2 cm) compared to multidetector computed tomography (MDCT) (for ≤2 cm, MRI: 0.928, 70, 93%, CT: 0.775, 30, 90%; for ≥2 cm, MRI: 0.744, 80%, 84%; CT: 0.692, 40%, 84%). Gd-EOB-DTPA contrast media-enhanced MRI scanner for detecting malignant and focal liver nodules before operation showed the higher detection rate of lesion and classification of lesion as either benign or malignant than multiphase enhanced MDCT when the ROC curve was used for analysis. Based on these results, we believe that analysis based on the ROC curve will provide guidelines for evaluating malignant and focal hepatic lesions prior to operation.  相似文献   

17.
To investigate the damages to the extracellular matrix in articular cartilage due to cryopreservation, the depth-dependent concentration profiles of glycosaminoglycans (GAGs) in 34 cartilage specimens from canine humeral heads were imaged at 13-μm pixel resolution using the in vitro version of the dGEMRIC protocol in microscopic MRI (μMRI). In addition, a biochemical assay was used to determine the GAG loss from the tissue to the solution where the tissue was immersed. For specimens that had been frozen at −20°C or −80°C without any cryoprotectant, a significant loss of GAG (as high as 56.5%) was found in cartilage, dependent upon the structural zones of the tissue and the conditions of cryopreservation. The cryoprotective abilities of dimethyl sulfoxide (DMSO) as a function of its concentration in saline and storage temperature were also investigated. A 30% DMSO concentration was sufficient in preventing the reduction of GAG in the tissue at the −20°C storage temperature, but a 50% concentration of DMSO was necessary for the −80°C cryopreservation. These imaging results were verified by the biochemical analysis.  相似文献   

18.
The purpose of our study was to assess whether T2 MRI identifies the infarcted myocardium or the true area-at-risk (AAR) and whether edema is present in the salvageable region following acute myocardial infarction (MI). The study involved a porcine model of MI with a coronary occlusion model of either 60 min or 90 min. Imaging was performed on a 3T MRI pre-occlusion and at day 3 post-MI. Prior-MI, myocardial perfusion territory (MPT) maps were obtained under MRI via direct intracoronary injection of contrast agent. Post-MI, edema extent was quantified by T2 mapping while infarction and microvascular obstruction (MVO) were assessed by late gadolinium enhancement (LGE). Anatomically registered short-axis slices were analyzed for MPT, T2-AAR and infarct areas and T2 relaxation values. Animals were divided into groups with (MVO+) and without MVO (MVO-). T2-AAR area was significantly greater than infarct area in both groups. In the MVO+ group, T2-AAR and MPT were comparable and highly correlated, whereas, in the MVO- group, T2-AAR significantly underestimated MPT without any trend. T2 values in the salvageable myocardium were found to be significantly higher than those in remote myocardium. Our methodology offers the advantage that all images are acquired within the same MRI reference as opposed to complex co-registration with gross pathology. Our study suggests that edema may expand beyond the infarct zone over the entire ischemic bed. T2-AAR may be more clinically relevant than true AAR by perfusion territory since it identifies the “salvageable” myocardium.  相似文献   

19.

Background

Due to limited SNR the cerebral applications of the intravoxel incoherent motion (IVIM) concept have been sparse. MRI hardware developments have resulted in improved SNR and this may justify a reassessment of IVIM imaging for non-invasive quantification of the cerebral blood volume (CBV) as a first step toward determining the optimal field strength.

Purpose

To investigate intravoxel incoherent motion imaging for its potential to assess cerebral blood volume (CBV) at three different MRI field strengths.

Materials and methods

Four volunteers were scanned twice at 1.5 T, 3 T as well as 7 T. By correcting for field-strength-dependent effects of relaxation, estimates of corrected CBV (cCBV) were obtained in deep gray matter (DGM), frontal gray matter (FGM) and frontal white matter (FWM), using Bayesian analysis. In addition, simulations were performed to facilitate the interpretation of experimental data.

Results

In DGM, FGM and FWM we obtained cCBV estimates of 2.2 ml/100 ml, 2.7 ml/100 ml, 1.4 ml/100 ml at 1.5 T; 3.7 ml/100 ml, 5.0 ml/100 ml, 3.2 ml/100 ml at 3 T and 15.5 ml/100 ml, 20.3 ml/100 ml, 7.0 ml/100 ml at 7 T.

Conclusion

Quantitative cCBV values obtained at 1.5 T and 3 T corresponded better to physiological reference values, while 7 T showed the largest deviation from expected values. Simulations of synthetic tissue voxels indicated that the discrepancy at 7 T can partly be explained by SNR issues. Results were generally more repeatable at 7 T (intraclass correlation coefficient, ICC = 0.84) than at 1.5 T (ICC = 0.68) and 3 T (ICC = 0.46).  相似文献   

20.

Purpose

To evaluate whether a non-linear blood ΔR2*-versus-concentration relationship improves quantitative cerebral blood flow (CBF) estimates obtained by dynamic susceptibility contrast (DSC) MRI in a comparison with Xe-133 SPECT CBF in healthy volunteers.

Material and Methods

Linear as well as non-linear relationships between ΔR2* and contrast agent concentration in blood were applied to the arterial input function (AIF) and the venous output function (VOF) from DSC-MRI. To reduce partial volume effects in the AIF, the arterial time integral was rescaled using a corrected VOF scheme.

Results

Under the assumption of proportionality between the two modalities, the relationship CBF(MRI) = 0.58CBF(SPECT) (r = 0.64) was observed using the linear relationship and CBF(MRI) = 0.51CBF(SPECT) (r = 0.71) using the non-linear relationship.

Discussion

A smaller ratio of the VOF time integral to the AIF time integral and a somewhat better correlation between global DSC-MRI and Xe-133 SPECT CBF estimates were observed using the non-linear relationship. The results did not, however, confirm the superiority of one model over the other, potentially because realistic AIF signal data may well originate from a combination of blood and surrounding tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号