首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transmit Array Spatial Encoding (TRASE) is a novel MRI technique that encodes spatial information by introducing phase gradients in the transmit RF (B1) magnetic field. Since TRASE relies on the use of multiple RF fields (B1 fields with different phase gradients) for k-space traversal, a TRASE pulse sequence requires RF pulses that are produced by switching between the transmit coils (B1 fields). However, interactions among the transmit RF coils can cause un-driven coils to produce unwanted B1 fields that impair the spatial encoding. Therefore, TRASE is sensitive to B1 field perturbations arising from inductive coupling among the RF transmit coils and any B1 field isolation (coil decoupling) technique requires an understanding of the effects of the B1 field interactions. The purpose of this study was to investigate the effects of B1 field coupling using Bloch equation based simulations and to determine the acceptable level of B1 field interactions for 2D TRASE imaging. The simulations show that 2D TRASE MRI (using a 3-coil setup) displays ideal performance for pairwise coupling constant lower than k = 0.01 while having acceptable performance up to k = 0.1. This translates into S12 measurements of range ~(− 50 dB to −30 dB) required for successful 2D TRASE MRI in this study. This result is of crucial importance for designers of practical TRASE transmit array systems.  相似文献   

2.

Purpose

To investigate intracranial microvascular images with transceiver radio-frequency (RF) coils at ultra-high field 7 T magnetic resonance imaging (MRI).

Materials and methods

We designed several types of RF coils for the study of 7 T magnetic resonance angiography and analyzed quantitatively each coil's performance in terms of the signal-to-noise ratio (SNR) profiles to evaluate the usefulness of RF coils for microvascular imaging applications. We also obtained the microvascular images with different resolutions and parallel imaging technique.

Results

The overlapped 6-channel (ch) transceiver coil exhibited the highest performance for angiographic imaging. Although other multi-channel coils, such as 4- or 8-ch, were also suitable for fast imaging, these coils performed poorly in homogeneity or SNR for angiographic imaging. Furthermore, the 8-ch coil was poor in SNR at the center of the brain, while it had the highest SNR at the periphery.

Conclusion

The present study has demonstrated that the overlapped 6-ch coil with large-size loop coils provided the best performance for microvascular imaging or angiography with the ultra-high-field 7 T MRI, mainly because of its long penetration depth together with high SNR.  相似文献   

3.

Objectives

A patient with a breast tissue expander may require a diagnostic assessment using magnetic resonance imaging (MRI). To ensure patient safety, this type of implant must undergo in vitro MRI testing using proper techniques. Therefore, this investigation evaluated MRI issues (i.e., magnetic field interactions, heating, and artifacts) at 3-Tesla for a breast tissue expander with a remote port.

Methods

A breast tissue expander with a remote port (Integra Breast Tissue Expander, Model 3612-06 with Standard Remote Port, PMT Corporation, Chanhassen, MN) underwent evaluation for magnetic field interactions (translational attraction and torque), MRI-related heating, and artifacts using standardized techniques. Heating was evaluated by placing the implant in a gelled-saline-filled phantom and MRI was performed using a transmit/receive RF body coil at an MR system reported, whole body averaged specific absorption rate of 2.9-W/kg. Artifacts were characterized using T1-weighted and GRE pulse sequences.

Results

Magnetic field interactions were not substantial and, thus, will not pose a hazard to a patient in a 3-Tesla or less MRI environment. The highest temperature rise was 1.7 °C, which is physiologically inconsequential. Artifacts were large in relation to the remote port and metal connector of the implant but will only present problems if the MR imaging area of interest is where these components are located.

Conclusions

A patient with this breast tissue expander with a remote port may safely undergo MRI at 3-Tesla or less under the conditions used for this investigation. These findings are the first reported at 3-Tesla for a tissue expander.  相似文献   

4.

Purpose

The purpose was to evaluate radiofrequency (RF)-related heating of commonly used extracranial neurosurgical implants in 7-T magnetic resonance imaging (MRI).

Materials and methods

Experiments were performed using a 7-T MR system equipped with a transmit/receive RF head coil. Four commonly used titanium neurosurgical implants were studied using a test procedure adapted from the American Society for Testing and Materials Standard F2182-11a. Implants (n = 4) were tested with an MRI turbo spin echo pulse sequence designed to achieve maximum RF exposure [specific absorption rate (SAR) level = 9.9 W/kg], which was further validated by performing calorimetry. Maximum temperature increases near each implant's surface were measured using fiberoptic temperature probes in a gelled-saline-filled phantom that mimicked the conductive properties of soft tissue. Measurement results were compared to literature data for patient safety.

Results

The highest achievable phantom averaged SAR was determined by calorimetry to be 2.0 ± 0.1 W/kg due to the highly conservative SAR estimation model used by this 7-T MR system. The maximum temperature increase at this SAR level was below 1.0 °C for all extracranial neurosurgical implants that underwent testing.

Conclusion

The findings indicated that RF-related heating under the conditions used in this investigation is not a significant safety concern for patients with the particular extracranial neurosurgical implants evaluated in this study.  相似文献   

5.
6.

Purpose

To develop a method for estimating metabolite concentrations using phased-array coils and sensitivity-encoded (SENSE) magnetic resonance spectroscopic images (MRSI) of the human brain.

Materials and Methods

The method is based on the phantom replacement technique and uses receive coil sensitivity maps and body-coil loading factors to account for receive B1 inhomogeneity and variable coil loading, respectively. Corrections for cerebrospinal fluid content from the MRSI voxel were also applied, and the total protocol scan time was less than 15 min. The method was applied to 10 normal human volunteers using a multislice 2D-MRSI sequence at 3 T, and seven different brain regions were quantified.

Results

N-Acetyl aspartate (NAA) concentrations varied from 9.7 to 14.7 mM, creatine (Cr) varied from 6.6 to 10.6 mM and choline (Cho) varied from 1.6 to 3.0 mM, in good general agreement with prior literature values.

Conclusions

Quantitative SENSE-MRSI of the human brain is routinely possible using an adapted phantom-replacement technique. The method may also be applied to other MRSI techniques, including conventional phase encoding, with phased-array receiver coils, provided that coil sensitivity profiles can be measured.  相似文献   

7.

Objective

Development of a fast 3D high-resolution magnetic resonance imaging (MRI) protocol for improved carotid artery plaque imaging.

Methods

Two patients with carotid atherosclerosis disease underwent 3D high-resolution MRI which included time-of-flight and T1-weighted variable flip angle, fast-spin-echo (FSE) imaging, pre- and post-intravenous gadolinium-based contrast agent administration.

Results

Good quality images with intrinsic blood suppression were obtained pre- and post-contrast administration using a 3D FSE sequence. The plaque burden, lipid core volume, hemorrhage volume and fibrous cap thickness were well determined.

Conclusions

3D high-resolution MR imaging of carotid plaque using TOF and 3D FSE can achieve high isotropic resolution, large coverage, and excellent image quality within a short acquisition time.  相似文献   

8.

Purpose

To present preliminary, in vivo temperature measurements during MRI of a pig implanted with a deep brain stimulation (DBS) system.

Materials and Methods

DBS system (Medtronic Inc., Minneapolis, MN) was implanted in the brain of an anesthetized pig. 3.0-T MRI was performed with a T/R head coil using the low-SAR GRE EPI and IR-prepped GRE sequences (SAR: 0.42 and 0.39 W/kg, respectively), and the high-SAR 4-echo RF spin echo (SAR: 2.9 W/kg). Fluoroptic thermometry was used to directly measure RF-related heating at the DBS electrodes, and at the implantable pulse generator (IPG). For reference the measurements were repeated in the same pig at 1.5 T and, at both field strengths, in a phantom.

Results

At 3.0 T, the maximal temperature elevations at DBS electrodes were 0.46 °C and 2.3 °C, for the low- and high-SAR sequences, respectively. No heating was observed on the implanted IPG during any of the measurements. Measurements of in vivo heating differed from those obtained in the phantom.

Conclusion

The 3.0-T MRI using GRE EPI and IR-prepped GRE sequences resulted in local temperature elevations at DBS electrodes of no more than 0.46 °C. Although no extrapolation should be made to human exams and much further study will be needed, these preliminary data are encouraging for the future use 3.0-T MRI in patients with DBS.  相似文献   

9.
Quantitative magnetic resonance imaging (MRI) studies of small samples such as a single cell or cell clusters require application of radiofrequency (RF) coils that provide homogenous B1 field distribution and high signal-to-noise ratio (SNR).We present a novel design of an MRI RF volume microcoil based on a microstrip structure. The coil consists of two parallel microstrip elements conducting RF currents in the opposite directions, thus creating homogenous RF field within the space between the microstrips. The construction of the microcoil is simple, efficient and cost-effective.Theoretical calculations and finite element method simulations were used to optimize the coil geometry to achieve optimal B1 and SNR distributions within the sample and predict parameters of the coil. The theoretical calculations were confirmed with MR images of a 1-mm-diameter capillary and a plant obtained with the double microstrip RF microcoil at 11.7 T. The in-plane resolution of MR images was 24 μm×24 μm.  相似文献   

10.

Objective

Vascular grafting frequently involves a time-consuming operation. A new vascular coupling device (VCD) made from metallic material was recently developed that may be advantageous because of the reduced operative time and decreased patient risks. Because of the metal, there are safety concerns related to MRI. Therefore, the purpose of this investigation was to use standardized testing techniques to evaluate MRI issues for this VCD in association with a 3-Tesla MR system.

Methods

The VCD (corlife oHG, Hannover, Germany) was evaluated for magnetic field interactions (translational attraction and torque), MRI-related heating, and artifacts at 3-Tesla. MRI-related heating was assessed with the VCD in a gelled-saline-filled phantom with MRI performed at a whole body averaged SAR of 2.9-W/kg for 15-min. Artifacts were assessed using T1-weighted, spin echo, and gradient echo pulse sequences.

Results

The VCD exhibited minor magnetic field interactions and minimal heating (maximum temperature elevation, 1.8 °C). Artifacts were relatively small in relation to the size and shape of this implant. The lumen of the VCD could not be visualized using the gradient echo pulse sequence.

Conclusions

The metallic VCD that underwent evaluation is MR conditional for a patient undergoing an MRI procedure at 3-Tesla or less.  相似文献   

11.
Copper foil has been widely employed in conventional radio frequency (RF) birdcage coils for magnetic resonance imaging (MRI). However, for ultrahigh-field (UHF) MRI, current density distribution on the copper foil is concentrated on the surface and the edge due to proximity effect. This increases the effective resistance and distorts the circumferential sinusoidal current distribution on the birdcage coils, resulting in low signal-to-noise ratio (SNR) and inhomogeneous distribution of RF magnetic (B1) field. In this context, multiple parallel round wires were proposed as legs of a birdcage coil to optimize current density distribution and to improve the SNR and the B1 field homogeneity. The design was compared with three conventional birdcage coils with different width flat strip surface legs for a 9.4 T (T) MRI system, e.g., narrow-leg birdcage coil (NL), medium-leg birdcage coil (ML), broad-leg birdcage coil (BL) and the multiple parallel round wire-leg birdcage coil (WL). Studies were carried out in in vitro saline phantom as well as in vivo mouse brain. WL showed higher coil quality factor Q and more homogeneous B1 field distribution compared to the other three conventional birdcage coils. Furthermore, WL showed 12, 10 and 13% SNR increase, respectively, compared to NL, ML and BL. It was proposed that conductor’s shape optimization could be an effective approach to improve RF coil performance for UHF MRI.  相似文献   

12.

Objective

The objective of this study was to develop quantitative T-weighted magnetic resonance imaging methodology for the detection and characterization of cartilage degeneration in a rabbit anterior cruciate ligament (ACL) transection model.

Methods

The right knee ACLs of 18 adult female New Zealand white rabbits were transected. The left knee joint served as a sham control. The rabbits were euthanized at 3 (Group 1), 6 (Group 2) and 12 (Group 3) weeks postoperatively. High-resolution 3D fat-saturated spoiled gradient echo images and T-weighted images were obtained in both the sagittal and axial planes at 3 T using a quadrature wrist coil. Following MR analysis, histological slides from the lateral femoral condyle cartilage were graded using the Mankin grading system.

Results

For all three groups, the average overall T values were significantly higher in the ACL-transected knee compared to control knee, and the percentage differences in T values between ACL-transected and control increased with the duration of time after transection. The average Mankin score for ACL-transected knees was higher than that for control for each time point, but this difference was statistically significant only for all groups combined.

Conclusions

This study demonstrates the feasibility of using T-weighted imaging as a useful tool in the detection and quantification of cartilage damage in all knee compartments in an ACL-transected rabbit model of cartilage degeneration.  相似文献   

13.

Objective

The objective was to evaluate magnetic resonance imaging (MRI) issues (magnetic field interactions, heating, artifacts and functional alterations) at 1.5 T and 3 T for the Argus II Retinal Prosthesis (Second Sight Medical Products, Sylmar, CA, USA).

Materials and Methods

Standardized protocols were used to assess magnetic field interactions (translational attraction and torque; 3 T, worst case), MRI-related heating (1.5 and 3 T), artifacts (3 T; worst case) and functional changes (1.5 and 3 T) associated with MRI.

Results

The magnetic field interactions were acceptable. MRI-related heating, which was studied at a relatively high, MR system-reported whole body averaged specific absorption rates, will not pose a hazard to the patient under the conditions used for testing. While artifacts were “moderate” in relation to the dimensions of the Argus II Retinal Prosthesis, optimization of MRI parameters can reduce the size of the artifacts. Exposures to MRI conditions at 1.5 and 3 T did not damage or alter the functional aspects of the Argus II Retinal Prosthesis.

Conclusions

In consideration of the test results, a patient with the Argus II Retinal Prosthesis may undergo MRI at 1.5 T or 3 T when specific guidelines and MRI conditions are followed, including those advised by the manufacturer.  相似文献   

14.

Object

To evaluate the feasibility of an optimized MRI protocol based on high field imaging at 3 T in combination with accelerated data acquisition by parallel imaging for the analysis of oropharyngeal and laryngeal function.

Materials and Methods

Fast 2D gradient echo (GRE) MRI with different spatial resolutions (1.7×2.7 and 1.1×1.5 mm2) and image update rates (4 and 10 frames per second) was employed to assess pharyngeal movements and visualize swallowing via tracking of an oral contrast bolus (blueberry juice). In a study with 10 normal volunteers, image quality was semi-quantitatively graded by three independent observers with respect to the delineation of anatomical detail and depiction of oropharynx and larynx function. Additionally, the feasibility of the technique for the visualization of pathological pre- and post-surgical oropharynx and larynx function was evaluated in a patient with inspiratory stridor.

Results

Image grading demonstrated the feasibility of dynamic MRI for the assessment of normal oropharynx and larynx anatomy and function. Superior image quality (P<.05) was found for data acquisition with four frames per second and higher spatial resolution. In the patient, dynamic MRI detected pathological hypermobility of the epiglottis resulting in airway obstruction. Additional post-surgical MRI for one clinical case revealed morphological changes of the epiglottis and improved function, i.e., absence of airway obstruction and normal swallowing.

Conclusion

Results of the volunteer study demonstrated the feasibility of dynamic MRI at 3 T for the visualization of the oropharynx and larynx function during breathing, movements of the tongue and swallowing. Future studies are necessary to evaluate its clinical value compared to existing modalities based on endoscopy or radiographic techniques.  相似文献   

15.
The purpose of this study was to analyse the relationship between the radio frequency (RF) coil performance and conductor surface shape for ultra-high field (UHF) magnetic resonance imaging. Twelve different leg-shaped quadrature birdcage coils were modeled and built, e.g., 4 mm-width-leg conventional birdcage coil, 7 mm-width-leg conventional birdcage, 10 mm-width-leg conventional birdcage coil, 13 mm-width-leg conventional birdcage coil, inside arc-shape-leg birdcage coil, outward arc-shape-leg birdcage coil, inside right angle-shape-leg birdcage coil, outward right angle-shape-leg birdcage coil, vertical 4 mm-width-leg vertical birdcage, 6 mm-width-leg vertical birdcage, 8 mm-width-leg vertical birdcage and 10 mm-width-leg vertical birdcage. Studies were carried out in both electromagnetic simulations with finite element method as well as in vitro saline phantom experiments at 9.4 T. Both the results of simulation and experiment showed that conventional birdcage coil produces the highest signal-to-noise ratio (SNR) while the vertical birdcage coil produces the most homogeneous RF magnetic (B 1) field at UHF. For conventional birdcage coils, as well as the vertical birdcage coils, only the proper width of legs results in the best performance (e.g., B 1 homogeneous and SNR). For vertical birdcage coils, the wider the leg size, the higher RF magnetic (B 1) field intensity distribution.  相似文献   

16.
A 16-channel transceiver radiofrequency (RF) array using Helmholtz coils was designed to improve the RF transmission |B 1 + |-field homogeneity for human brain magnetic resonance imaging (MRI) at 7 T. A numerical simulation of the proposed Helmholtz transceiver array was performed using the finite-difference time-domain method—the subset of the finite-element method simulation. The simulation results of proposed 16-channel Helmholtz transceiver array were compared with the generally used rectangular transceiver array in term of their |B 1 + |-field and specific absorption rate (SAR). The simulation of each single element in 16-channel Helmholtz and rectangular transceiver arrays was compared using water phantom in term of their magnetic flux |B 1| homogeneity for the full width at half maximum. From the simulation results, the proposed 16-channel Helmholtz transceiver array configuration offers superior |B 1 + |-field homogeneity and low SAR at 7 T. These modifications to the coil geometries of the transceiver array coil could be applied to a 7-T MRI, and also extended to increase the homogenous coverage on |B 1 + |field with low SAR.  相似文献   

17.

Background and Purpose

A recent report suggested that a serious burn injury was due to the presence of the identification (ID) wristband. As such, in lieu of removing or padding hospital ID wristbands in all patients prior to magnetic resonance imaging (MRI), testing may be performed to characterize risks for ID wristbands. Therefore, the purpose of this investigation was to evaluate the magnetic field interactions, heating and artifacts at 3 T for a hospital ID wristband.

Materials and Methods

Standardized test methods were used to evaluate magnetic field interactions, MRI-related heating, and artifacts at 3 T for a hospital ID wristband.

Results

There were no magnetic field interactions. MRI-related heating evaluated at a relatively high, MR system-reported, whole body-averaged specific absorption rate (2.9 W/kg) did not increase above the background level. The artifacts related to the ink used for printing were “small” for one toner and “large” for the other in relation to the dimensions of the printing.

Conclusions

Based on the tests performed, this particular hospital ID wristband is considered MR safe and will not pose a hazard to a patient undergoing an MRI examination. Importantly, it is not necessary to remove this item for a patient referred for MRI.  相似文献   

18.

Purpose

Quantitative imaging of the rat skin was performed using magnetic resonance imaging (MRI) at 900 MHz.

Materials and methods

A number of imaging techniques utilized for multiple contrast included magnetization transfer contrast, spin-lattice relaxation constant (T1-weighting), combination of T2-weighting with magnetic field inhomogeneity (T2*-weighting), magnetization transfer weighting and diffusion tensor weighting. These were used to obtain 2D slices and 3D multislice-multiecho images with high magnetic resonance contrast. These 2D and 3D imaging techniques were combined to achieve high-resolution MRI.

Results

Oil–water phantom showed distinct fat-water contrast. The dermis and epidermis, including the stratum corneum remnants, of nude rat skin were distinct due to their proton magnetic resonance as a result of proton interactions with the skin interstitial tissue. Combined details obtained from high-resolution, high-quality ex vivo skin images with different multicontrast characteristics generated better differentiation of skin layers, sublayers and significant correlation (r2=0.4927 for MRI area, r2=0.3068 for histology area; P<.0148) of MR data with co-registered histological areas of the epidermis as well as the hair follicle.

Conclusion

The multiple contrast approach provided a noninvasive ex vivo MRI visualization with semi-quantitative assessment of the major skin structures including the stratum corneum remnants, epidermis, hair, papillary dermis, reticular dermis and hypodermis.  相似文献   

19.

Objective

The purpose of this study is to determine the feasibility of measuring total uterine blood flow in pregnancy using magnetic resonance imaging (MRI) technique.

Methods

Uterine blood flow was determined in pregnant women in whom MRI was being carried out to assess a fetal anomaly. A two-dimensional time-of-flight magnetic resonance (MR) angiogram sequence was performed. Scout images and a peripherally gated phase contrast MR sequence were planned to study simultaneous blood flow in the uterine and ovarian arteries.

Results

The MR pelvic angiogram sequence was completed in 13 women. The uterine arteries were visualized and their cross-sectional area determined. The complexity of the pelvic blood supply prevented the calculation of blood flow velocity and, thus, total uterine blood flow.

Conclusion

The measurement of total uterine blood flow during pregnancy was not possible using our MR technique. The ovarian vessels were not consistently visualized. Doppler ultrasonography remains the best modality by which to estimate total uterine blood flow in pregnancy.  相似文献   

20.

Purpose

This study aimed to investigate the role of cognitive and behavioural factors in the experience of claustrophobia in the context of magnetic resonance imaging (MRI) scanners.

Materials and Methods

One hundred and thirty outpatients attending an MRI unit completed questionnaires before and after their scans. Specific measures of experience in the scanner included subjective anxiety, panic symptoms, strategies used to stay calm and negative cognitions (such as ‘I will suffocate’ and ‘I am going to faint in here’). Other general measures used included anxiety, depression, health anxiety and fears of restriction and suffocation.

Results

The amount of anxiety experienced during the scan was related to the perceived amount of time spent having physical symptoms of panic. Cognitions reported concerned the following: suffocation, harm caused by the machine and lack of perceived control. The number of strategies patients used to cope in the machine was also a related factor. Neither position in the scanner, nor head coil use nor previous experience of being in the scanner was related to levels of anxiety.

Conclusion

The cognitions identified here may be used to construct a measure to identify those unable to enter the scanner or those most likely to become claustrophobic whilst undergoing the procedure and to further inform future brief, effective interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号