首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The q-space imaging techniques and high angular resolution diffusion (HARD) imaging have shown promise to identify intravoxel multiple fibers. The measured orientation distribution function (ODF) and apparent diffusion coefficient (ADC) profiles can be used to identify the orientations of the actual intravoxel fibers. The present study aims to examine the accuracy of these profile-based orientation methods by comparing the angular deviations between the estimated local maxima of the profiles and the real fiber orientation for a fiber crossing simulated with various intersection angles under different b values in diffusion-weighted MRI experiments. Both noisy and noise-free environments were investigated. The diffusion spectrum imaging (DSI), q-ball imaging (QBI), and HARD techniques were used to generate ODF and ADC profiles. To provide a better comparison between ODF and ADC techniques, the phase-corrected angular deviations were also presented for the ADC method based on a circular spectrum mapping method. The results indicate that systematic angular deviations exist between the actual fiber orientations and the corresponding local maxima of either the ADC or ODF profiles. All methods are apt to underestimation of acute intersection and overestimation of obtuse intersection angle. For a typical slow-exchange fiber crossing, the ODF methods have a non-deviation zone around the 90 degrees intersection. Before the phase-correction, the deviation of ADC profiles approaches a peak at the 90 degrees intersection, while after the correction the ADC deviations are significantly reduced. When the b factor is larger than 1000 s/mm2, the ODF methods have smaller angular deviations than the ADC methods for the intersections close to 90 degrees . QBI method demonstrates a slight yet consistent advantage over the DSI method under the same conditions. In the noisy environment, the mean value of the deviation angles shows a high consistency with the corresponding deviation in the nose-free condition.  相似文献   

2.
Structural connectivity between cortical regions of the human brain can be characterized noninvasively with diffusion tensor imaging (DTI)-based fiber tractography. In this paper, a novel fiber tractography technique, globally optimized fiber tracking and hierarchical fiber clustering, is presented. The proposed technique uses k-means clustering in conjunction with modified Hubert statistic to partition fiber pathways, which are evaluated with simultaneous consideration of consistency with underlying DTI data and smoothness of fiber courses in the sense of global optimality, into individual anatomically coherent fiber bundles. In each resulting bundle, fibers are sampled, perturbed and clustered iteratively to approach the optimal solution. The global optimality allows the proposed technique to resist local image artifacts and to possess inherent capabilities of handling complex fiber structures and tracking fibers between gray matter regions. The embedded hierarchical clustering allows multiple fiber bundles between a pair of seed regions to be naturally reconstructed and partitioned. The integration of globally optimized tracking and hierarchical clustering greatly benefits applications of DTI-based fiber tractography to clinical studies, particularly to studies of structure-function relations of the complex neural network of the human. Experiments with synthetic and in vivo human DTI data have demonstrated the effectiveness of the proposed technique in tracking complex fiber structures, thus proving its significant advantages over traditionally used streamline fiber tractography.  相似文献   

3.
Qunfei Ou  Jianguo Chen  Nianchun Sun 《Optik》2008,119(5):213-217
Threshold conditions of coherently combined fiber lasers, joint by fiber couplers (FCs), have been studied. After considering the phase change of a light wave crossing the fiber inside the FC, it has been shown that, at the two input ports of the coupler connecting with the amplifying fibers, the phase difference between the two incoming fields should be equal to −π/2 if the threshold gain of the compound system is to be minimized. Starting from these input ports, following the circulations of waves, threshold conditions can be established. Expressions for the output and leakage powers, and optimum coupler splitting ratio nullifying the leakage when constituent fiber lasers giving different free-running powers have been derived. And, the threshold gain reductions of individual lasers after being coherently combined have been predicted.  相似文献   

4.
In diffusion magnetic resonance imaging with high-angular-resolution diffusion imaging, a set of techniques has become available that allows better acquisition and representation of multidirectional diffusion profiles, e.g., in voxels with crossing, branching and kissing fibers. The poor spatial resolution and low signal-to-noise ratio of the data, particularly when acquired under clinical conditions, prevent tractography algorithms from reliably reconstructing complex white matter structures. With cone-beam regularization, an intervoxel smoothing approach has been described, which, in this article, is refined and adapted to fibers with subvoxel bending. By introducing the concept of asymmetric orientation distribution functions (aODFs), we are able to sharpen diffusion profiles of bending fibers and estimate subvoxel curvature. We also propose a deterministic fiber-tracking algorithm that exploits the enhanced resolution of aODFs. The approach is evaluated quantitatively and compared with state-of-the-art noise-suppression techniques in a study with a biological diffusion phantom. Moreover, we present results from an in vivo study in which we demonstrate the method's ability to optimize tractography of bending fiber pathways of optic radiation.  相似文献   

5.
Diffusion tensor imaging (DTI)-based fiber tractography holds great promise in delineating neuronal fiber tracts and, hence, providing connectivity maps of the neural networks in the human brain. An array of image-processing techniques has to be developed to turn DTI tractography into a practically useful tool. To this end, we have developed a suite of image-processing tools for fiber tractography with improved reliability. This article summarizes the main technical developments we have made to date, which include anisotropic smoothing, anisotropic interpolation, Bayesian fiber tracking and automatic fiber bundling. A primary focus of these techniques is the robustness to noise and partial volume averaging, the two major hurdles to reliable fiber tractography. Performance of these techniques has been comprehensively examined with simulated and in vivo DTI data, demonstrating improvements in the robustness and reliability of DTI tractography.  相似文献   

6.
7.
平面回波影像(EPI)常常在额叶、颞叶或脑干处出现严重的影像扭曲.目前已有数种方法可校正这种由磁化率差异造成的影像扭曲,该文提出一种简单有效的方法叫点弥散函数模型法.由纤维追踪的角度来探讨影像扭曲校正的有效性.评估的方法是将点弥散函数模型法应用于扩散频谱影像,并比较由扭曲影像与校正影像所得之扣带回纤维数目的多寡.定义了一个指标用来量化影像扭曲校正的有效性:r=( Nc-Nd)/( Nc+Nd),此值越大代表校正影像的纤维追踪结果越好.对于左扣带回与右扣带回,其r值分别为0 .424±0 .452(平均±标准差)及0 .343±0 .452 ,且在统计上皆显著大于零.结果显示,就左右扣带回而言,校正后的影像其纤维追踪的结果较扭曲影像更佳.因此,将点弥散函数模型法应用于校正扩散频谱影像的扭曲可增进左右扣带回的纤维追踪的结果.  相似文献   

8.
In recent years, diffusion tensor imaging (DTI) and its variants have been used to describe fiber orientations and q-space diffusion MR was proposed as a means to obtain structural information on a micron scale. Therefore, there is an increasing need for complex phantoms with predictable microcharacteristics to challenge different indices extracted from the different diffusion MR techniques used. The present study examines the effect of diffusion pulse sequence on the signal decay and diffraction patterns observed in q-space diffusion MR performed on micron-scale phantoms of different geometries and homogeneities. We evaluated the effect of the pulse gradient stimulated-echo, the longitudinal eddy current delay (LED) and the bipolar LED (BPLED) pulse sequences. Interestingly, in the less homogeneous samples, the expected diffraction patterns were observed only when diffusion was measured with the BPLED sequence. We demonstrated the correction ability of bipolar diffusion gradients and showed that more accurate physical parameters are obtained when such a diffusion gradient scheme is used. These results suggest that bipolar gradient pulses may result in more accurate data if incorporated into conventional diffusion-weighted imaging and DTI.  相似文献   

9.
Xiaobin Xu  Chunxi Zhang  Xiong Pan 《Optik》2010,121(13):1170-1175
To analyze quantitatively and systematically the reflection error in optical path of closed-loop polarization-maintained (PM) fiber optical gyroscope (FOG), the optical model is established and analyzed. Based on the optical model and the principle of the coherence detection in signal processing, the source of the reflection error is disclosed from the point of wave trains, and its effect on FOG performance is analyzed in detail, including variation as the step wave on modulator and as the environment temperature. In addition, the measures are promoted to suppress the reflection error, and the simulation result demonstrates that the peak-to-peak value of the reflection error can be suppressed from about 0.8°/h to less than 6×10−3°/h through matching the length of birefringent pigtails, which is small enough to meet the requirement of FOG with high performance.  相似文献   

10.
Quantification of the living human visual system using MRI methods has been challenging, but several applications demand a reliable and time-efficient data acquisition protocol. In this study, we demonstrate the utility of high-spatial-resolution diffusion tensor fiber tractography (DTT) in reconstructing and quantifying the human visual pathways. Five healthy males, age range 24–37 years, were studied after approval of the institutional review board (IRB) at The University of Texas Health Science Center at Houston. We acquired diffusion tensor imaging (DTI) data with 1-mm slice thickness on a 3.0-Tesla clinical MRI scanner and analyzed the data using DTT with the fiber assignment by continuous tractography (FACT) algorithm. By utilizing the high-spatial-resolution DTI protocol with FACT algorithm, we were able to reconstruct and quantify bilateral optic pathways including the optic chiasm, optic tract, optic radiations free of contamination from neighboring white matter tracts.  相似文献   

11.
Analysis of crossing fibers is a challenging topic in recent diffusion-weighted imaging (DWI). Resolving crossing fibers is expected to bring major changes to present tractography results based on the standard tensor model. Model free approaches, like Q-ball or diffusion spectrum imaging, as well as multi-tensor models are used to unfold the different diffusion directions mixed in a voxel of DWI data. Due to its seeming simplicity, the two-tensor model (TTM) is applied frequently to provide two positive-definite tensors and the relative population fraction modeling two crossing fiber branches. However, problems with uniqueness and noise instability are apparent. To stabilize the fit, several of the 13 physical parameters are fixed ad hoc, before fitting the model to the data. Our analysis of the TTM aims at fitting procedures where ad hoc parameters are avoided. Revealing sources of instability, we show that the model's inherent ambiguity can be reduced to one scalar parameter which only influences the fraction and the eigenvalues of the TTM, whereas the diffusion directions are not affected. Based on this, two fitting strategies are proposed: the parsimonious strategy detects the main diffusion directions without extra parameter fixation, to determine the eigenvalues and the population fraction an empirically motivated condition must be added. The expensive strategy determines all 13 physical parameters of the TTM by a fit to DWIs alone; no additional assumption is necessary. Ill-posedness of the model in case of noisy data is cured by denoising of the data and by L-curve regularization combined with global minimization performing a least-squares fit of the full model. By model simulations and real data applications, we demonstrate the feasibility of our fitting strategies and achieve convincing results. Using clinically affordable diffusion acquisition paradigms (encoding numbers: 21, 2*15, 2*21) and b values (b = 500–1500 s/mm2), this methodology can place the TTM parameters involved in crossing fibers on a more empirical basis than fitting procedures with technical assumptions.  相似文献   

12.
The nonhuman primate brain study provides important supplemental means for human brain exploration since the two species share close anatomical and functional similarities. MR diffusion tensor imaging (DTI) in human brain has revealed exquisite details of brain structures especially in the brain white matter. However, most previous monkey brain DTI results lack the spatial resolution in comparison to the conventional tracing and postmortem imaging methods, especially when it is acquired in commonly available human MRI scanners of field strength of 3 T or lower. To meet the increasing demands for nonhuman primate DTI studies, we proposed an in vivo high-resolution monkey DTI acquisition protocol that is practically feasible and combined it with an improved postprocessing procedure for a 3-T human scanner. The acquisition protocol, susceptibility distortion correction method with phase reversal acquisition, and postprocessing steps were proved to be effective in our study of rhesus monkeys. Results from diffusion tensor estimations and fiber tractography at 1 x 1 x 1 mm(3) resolution were found to be comparable to previous ex vivo DTI studies with much longer acquisition times. Effects of image resolution were evaluated and it was confirmed that the partial volume effect due to the larger voxel size in low-resolution data biased the diffusion tensor estimation and produced erroneous fiber tractography. Our results suggest that in vivo high-resolution monkey brain DTI can be achieved within practical time, which allows accurate diffusion tensor estimation and fiber tractography in monkey brains, so that the complex anatomical structures within many small but important anatomic structures can be delineated.  相似文献   

13.
A novel two-dimensional tilt sensor with a large measurement range is demonstrated by using four fiber Bragg gratings (FBGs) attached on a cylindrical cantilever-based pendulum. Experimental results show that tilt accuracy of ±0.2° and resolution of 0.013° have been achieved in the range of −40°-40°. The temperature effect is automatically eliminated without additional temperature compensation elements.  相似文献   

14.
A fiber Bragg grating (FBG) sensor head, using a pressure coupling mechanism, was designed for broadband frequency response and structural strain-free characteristic. The pressure-coupled sensor heads were connected to a simultaneous multipoint acoustic sensing system based on a tunable laser. An intelligent lasing wavelength stabilization algorithm capable of identifying the direction of spectrum movement, the wavelength shifting speed, and a fiber bending event was developed so that the simultaneous multipoint acoustic sensing system could be used in environments with rapid temperature variations. The lasing wavelength feedback control algorithm updated the lasing wavelength into the steep slope of the FBG spectrum even under conditions of rapid temperature change. The averaging lasing wavelength updating time was only 21 s because the system can decide a minimal size in scan window by finding the FBG spectrum shifting speed and direction in real time. The system was able to update the lasing wavelength which missed the steep slope of the FBG spectrum under maximum temperature variation rates 0.3014 and −0.3246 °C/s. The proposed system detected simultaneous impact waves at multiple points under conditions of rapid temperature change and change in dynamic strain.  相似文献   

15.
The purpose of this study was to investigate myocardial fiber pathway distribution in order to provide supplemental information on myocardial fiber architecture and cardiac mechanics. Diffusion tensor imaging (DTI) with medium diffusion resolution (15 directions) was performed on normal canine heart samples (N=6) fixed in formalin. With the use of diffusion tensor fiber tracking, left ventricle (LV) myocardial fiber pathways and helix angles were computed pixel by pixel at short-axis slices from base to apex. Distribution of DTI-tracked fiber pathway length and number was analyzed quantitatively as a function of fiber helix angle in step of 9 degrees . The long fiber pathways were found to have small helix angles. They are mostly distributed in the middle myocardium and run circumferentially. Fiber pathways tracked at the middle and upper LV are generally longer than those near the apex. Majority of fiber pathways have small helix angles between -20 degrees and 20 degrees , dominating the fiber architecture in myocardium. Likely, such myocardial fiber pathway measurement by DTI may reflect the spatial connectiveness or connectivity of elastic myofiber bundles along their preferential pathway of electromechanical activation. The dominance of the long and circumferentially running fiber pathways found in the study may explain the circumferential predominance in left ventricular contraction.  相似文献   

16.
在分析光纤环形镜工作原理的基础上,给出了基于光纤环形镜的线形腔掺Er3+光纤激光器相位和幅度的振荡条件.通过求解速率方程,理论分析了其输出特性,获得了稳态条件下激光器输出功率、阈值泵浦功率和斜率效率的解析表达式.推导出激光器工作所需掺Er3+光纤最短长度,并在给定泵浦光功率时,在特定输出波长上获得最大输出功率所需最佳掺Er3+光纤长度的表达式,且通过实验进行了验证.  相似文献   

17.
We propose and demonstrate strain and temperature discrimination technique using a single fiber Bragg grating (FBG) written in the core of an erbium doped fiber. We observed that amplified spontaneous emission power varying linearly from the erbium doped fiber with temperature which determines temperature changes and strain is estimated by subtracting the wavelength shift due to temperature change, from the measured shift corresponding to the dip in the transmission spectrum of the FBG. A simple and compact FBG sensor is presented with improved rms errors of 21.2 μ? and 1 °C over ranges of 0–800 μ? and 40–95 °C, respectively. The sensor is shown to have strain and temperature sensitivity of 0.8 pm/μ? and 12 pm/°C.  相似文献   

18.
A theoretical modeling of Yb-doped double-clad fiber lasers under various pumping modes including arbitrary numbers of end-pump and side-pump is introduced. Approximate analytic expressions of distributed lasers along the whole fiber are derived, and their accuracies are investigated. The effect of the pumping mode on the output performance of fiber lasers is discussed. The numerical results show that the approximate analytic solution is in excellent agreement with the exact numerical solution of the rate equations, the output power in the side-pump scheme is lower than that in end-pumping scheme, and more uniform distributions of laser and pump powers can be achieved by adopting the distributed pump mode and optimizing the arrangement of pump powers. However, further flattening the pump distribution by using more pump points can degrade the laser efficiency.  相似文献   

19.
A pulse train with a wavelength dependent time sequence is generated in a fiber laser configuration, which contains a cascaded wavelength-division-multiplexing (WDM) fiber Bragg grating (FBG) array and a tunable F-P filter. By distributing pulses to corresponding channels with a 1 × N analog electrical switch, a novel FBG sensors interrogation technique with advantages of high signal-to-noise ratio (SNR) and high interrogation speed is experimentally demonstrated. Then, a FBG sensing system based on this interrogation technique and the mature unbalanced scanning Michelson interferometer (USMI) demodulation technique is realized. The system has shown a sensitivity of 1.610°/με, for the 1555 nm FBG, which agrees well with the theoretical value of 1.674°/με.  相似文献   

20.
The threshold characteristics of linear cavity Yb3+-doped double-clad fiber laser have been studied theoretically and experimentally. By solving rate equations, the expression for threshold pump power is obtained. The effects of fiber length, mirror reflectivity, pump wavelength, laser wavelength and Yb3+ concentration on threshold pump power are discussed. Then, the Yb3+-doped double-clad fiber laser with linear cavity is developed. By using various output couplers, threshold pump power has been measured. The experimental results are in accord with theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号