首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

The pathological changes in Parkinson disease begin in the brainstem; reach the limbic system and ultimately spread to the cerebral cortex. In Parkinson disease (PD) patients, we evaluated the alteration of cingulate fibers, which comprise part of the limbic system, by using diffusional kurtosis imaging (DKI).

Methods

Seventeen patients with PD and 15 age-matched healthy controls underwent DKI with a 3-T MR imager. Diffusion tensor tractography images of the anterior and posterior cingulum were generated. The mean kurtosis (MK) and conventional diffusion tensor parameters measured along the images in the anterior and posterior cingulum were compared between the groups. Receiver operating characteristic (ROC) analysis was also performed to compare the diagnostic abilities of the MK and conventional diffusion tensor parameters.

Results

The MK and fractional anisotropy (FA) in the anterior cingulum were significantly lower in PD patients than in healthy controls. The area under the ROC curve was 0.912 for MK and 0.747 for FA in the anterior cingulum. MK in the anterior cingulum had the best diagnostic performance (mean cutoff, 0.967; sensitivity, 0.87; specificity, 0.94).

Conclusions

DKI can detect alterations of the anterior cingulum in PD patients more sensitively than can conventional diffusion tensor imaging. Use of DKI can be expected to improve the ability to diagnose PD.  相似文献   

2.

Introduction

We investigated microstructural changes in the spinal cord, separately for white matter and gray matter, in patients with cervical spondylosis by using diffusional kurtosis imaging (DKI).

Methods

We studied 13 consecutive patients with cervical myelopathy (15 affected sides and 11 unaffected sides). After conventional magnetic resonance (MR) imaging, DKI data were acquired by using a 3 T MR imaging scanner. Values for fractional anisotropy (FA), apparent diffusion coefficient (ADC), and mean diffusional kurtosis (MK) were calculated and compared between unaffected and affected spinal cords, separately for white matter and gray matter.

Results

Tract-specific analysis of white matter in the lateral funiculus showed no statistical differences between the affected and unaffected sides. In gray matter, only MK was significantly lower in the affected spinal cords than in unaffected spinal cords (0.60 ± 0.18 vs. 0.73 ± 0.13, P = 0.0005, Wilcoxon’s signed rank test).

Conclusions

MK values in the spinal cord may reflect microstructural changes and gray matter damage and can potentially provide more information beyond that obtained with conventional diffusion metrics.  相似文献   

3.

Purpose

The purpose was to investigate the altered hemispheric asymmetry in patients with mesial temporal lobe epilepsy with unilateral hippocampus sclerosis (MTLE/HS).

Materials and methods

This study examined the hemispheric asymmetry of regional gray matter (GM) and white matter (WM) volume among a group of 13 patients with left-sided MTLE/HS, a group of 10 patients with right-sided MTLE/HS and a group of 21 age- and gender- matched healthy controls by optimized voxel-based morphometry (VBM) based on magnetic resonance imaging.

Results

Compared to healthy controls, abnormal asymmetries were detected in the left-sided MTLE/HS patients. The left-sided MTLE/HS patients had more GM asymmetries (L<R) in the temporal lobes, including the inferior temporal gyrus, middle temporal gyrus and parahippocampal gyrus. There was significant asymmetry (L<R) in subcortical WM of the mesial temporal lobe in left-sided MTLE/HS patients. However, no significant difference was detected in terms of GM and WM asymmetry between the group with right-sided MTLE/HS and normal controls.

Conclusion

We should approach hemispheric asymmetry in left- and right-sided MTLE/HS patients differently. The study also demonstrates potential future use of VBM in detecting hemispheric asymmetries and lateralization of brain functions.  相似文献   

4.

Purpose

To assess the feasibility and to optimize imaging parameters of diffusion kurtosis imaging (DKI) in human kidneys.

Methods

The kidneys of ten healthy volunteers were examined on a clinical 3 T MR scanner. For DKI, respiratory triggered EPI sequences were acquired in the coronal plane (3 b-values: 0, 300, 600 s/mm2, 30 diffusion directions). A goodness of fit analysis was performed and the influence of the signal-to-noise ratio (SNR) on the DKI results was evaluated. Region-of-interest (ROI) measurements were performed to determine apparent diffusion coefficient (ADC), fractional anisotropy (FA) and mean kurtosis (MK) of the cortex and the medulla of the kidneys. Intra-observer and inter-observer reproducibility using Bland-Altman plots as well as subjective image quality of DKI were examined and ADC, FA, and MK parameters were compared.

Results

The DKI model fitted better to the experimental data (r = 0.99) with p < 0.05 than the common mono-exponential ADC model (r = 0.96).Calculation of reliable kurtosis parameters in human kidneys requires a minimum SNR of 8.31 on b = 0 s/mm2 images.Corticomedullary differentiation was possible on FA and MK maps. ADC, FA and MK revealed significant differences in medulla (ADC = 2.82 × 10− 3 mm2/s ± 0.25, FA = 0.42 ± 0. 05, MK = 0.78 ± 0.07) and cortex (ADC = 3.60 × 10− 3 mm2/s ± 0.28, FA = 0.18 ± 0.04, MK = 0.94 ± 0.07) with p < 0.001.

Conclusion

Our initial results indicate the feasibility of DKI in the human kidney presuming an adequate SNR. Future studies in patients with kidney diseases are required to determine the value of DKI for functional kidney imaging.  相似文献   

5.

Objectives

The objective was to perform ex vivo evaluation of non-Gaussian diffusion kurtosis imaging (DKI) for assessment of hepatocellular carcinoma (HCC), including presence of treatment-related necrosis, using fresh liver explants.

Methods

Twelve liver explants underwent 1.5-T magnetic resonance imaging using a DKI sequence with maximal b-value of 2000 s/mm2. A standard monoexponential fit was used to calculate apparent diffusion coefficient (ADC), and a non-Gaussian kurtosis fit was used to calculate K, a measure of excess kurtosis of diffusion, and D, a corrected diffusion coefficient accounting for this non-Gaussian behavior. The mean value of these parameters was measured for 16 HCCs based upon histologic findings. For each metric, HCC-to-liver contrast was calculated, and coefficient of variation (CV) was computed for voxels within the lesion as an indicator of heterogeneity. A single hepatopathologist determined HCC necrosis and cellularity.

Results

The 16 HCCs demonstrated intermediate-to-substantial excess diffusional kurtosis, and mean corrected diffusion coefficient D was 23% greater than mean ADC (P=.002). HCC-to-liver contrast and CV of HCC were greater for K than ADC or D, although these differences were significant only for CV of HCCs (P≤.046). ADC, D and K all showed significant differences between non-, partially and completely necrotic HCCs (P≤.004). Among seven nonnecrotic HCCs, cellularity showed a strong inverse correlation with ADC (r=−0.80), a weaker inverse correlation with D (− 0.24) and a direct correlation with K (r= 0.48).

Conclusions

We observed non-Gaussian diffusion behavior for HCCs ex vivo; this DKI model may have added value in HCC characterization in comparison with a standard monoexponential model of diffusion-weighted imaging.  相似文献   

6.
We report the first application of a novel diffusion-based MRI method, called diffusional kurtosis imaging (DKI), to investigate changes in brain tissue microstructure in patients with mild cognitive impairment (MCI) and AD and in cognitively intact controls. The subject groups were characterized and compared in terms of DKI-derived metrics for selected brain regions using analysis of covariance with a Tukey multiple comparison correction. Receiver operating characteristic (ROC) and binary logistic regression analyses were used to assess the utility of regional diffusion measures, alone and in combination, to discriminate each pair of subject groups. ROC analyses identified mean and radial kurtoses in the anterior corona radiata as the best individual discriminators of MCI from controls, with the measures having an area under the ROC curve (AUC) of 0.80 and 0.82, respectively. The next best discriminators of MCI from controls were diffusivity and kurtosis (both mean and radial) in the prefrontal white matter (WM), with each measure having an AUC between 0.77 and 0.79. Finally, the axial diffusivity in the hippocampus was the best overall discriminator of MCI from AD, having an AUC of 0.90. These preliminary results suggest that non-Gaussian diffusion MRI may be beneficial in the assessment of microstructural tissue damage at the early stage of MCI and may be useful in developing biomarkers for the clinical staging of AD.  相似文献   

7.

Purpose

To assess the feasibility of full diffusional kurtosis tensor imaging (DKI) in prostate MRI in clinical routine. Histopathological correlation was achieved by targeted biopsy.

Materials and Methods

Thirty-one men were prospectively included in the study. Twenty-one were referred to our hospital with increased prostate specific antigen (PSA) values (> 4 ng/ml) and suspicion of prostate cancer. The other 10 men were volunteers without any history of prostate disease. DKI applying diffusion gradients in 20 different spatial directions with four b-values (0, 300, 600, 1000 s/mm2) was performed additionally to standard functional prostate MRI. Region of interest (ROI)-based measurements were performed in all histopathologically verified lesions of every patient, as well as in the peripheral zone, and the central gland of each volunteer.

Results

DKI showed a substantially better fit to the diffusion-weighted signal than the monoexponential apparent diffusion coefficient (ADC). Altogether, 29 lesions were biopsied in 14 different patients with the following results: Gleason score 3 + 3 = 6 (n = 1), 3 + 4 = 7 (n = 7), 4 + 3 = 7 (n = 6), 4 + 4 = 8 (n = 1), and 4 + 5 = 9 (n = 2), and prostatitis (n = 12). Values of axial (Kax) and mean kurtosis (Kmean) were significantly different in the tumor (Kax 1.78 ± 0.39, Kmean 1.84 ± 0.43) compared with the normal peripheral zone (Kax 1.09 ± 0.12, Kmean 1.16 ± 0.13; p < 0.001) or the central gland (Kax 1.40 ± 0.12, Kmean 1.44 ± 0.17; p = 0.01 respectively). There was a minor correlation between axial kurtosis (r = 0.19) and the Gleason score.

Conclusion

Full DKI is feasible to utilize in a routine clinical setting. Although there is some overlap some DKI parameters can significantly distinguish prostate cancer from the central gland or the normal peripheral zone. Nevertheless, the additional value of DKI compared with conventional monoexponential ADC calculation remains questionable and requires further research.  相似文献   

8.

Purpose

To assess for associations between hippocampal atrophy and measures of cognitive function, hippocampal magnetization transfer ratio (MTR), and diffusion measures of the fornix, the largest efferent white matter tract from the hippocampus, in patients with multiple sclerosis (MS) and controls.

Materials and Methods

A total of 53 patients with MS and 20 age- and sex-matched healthy controls participated in cognitive testing and scanning including high spatial-resolution diffusion imaging and a T1-MPRAGE scan. Hippocampal volume and fornicial thickness measures were calculated and compared to mean values of fornicial transverse diffusivity, mean diffusivity, longitudinal diffusivity, fractional anisotropy, mean hippocampal MTR, and scores on measures of episodic memory, processing speed, and working memory tasks.

Results

In patients with MS, hippocampal volume was significantly related to fornicial diffusion measures (P < 7 × 10− 4) and to measures of verbal (P = 0.030) and visual spatial (P = 0.004) episodic memory and a measure of information processing speed (P < 0.037).

Discussion

These results highlight the role of the hippocampus in cognitive dysfunction in patients with MS and suggest that measures of hippocampal atrophy could be used to capture aspects of disease progression.  相似文献   

9.

Background and Purpose

Current approaches to diffusion tensor imaging (DTI) analysis do not permit identification of individual-level changes in DTI indices. We investigated the ability of wild bootstrapping analysis to detect subject-specific changes in brain white matter (WM) before and after sports-related concussion.

Materials and Methods

A prospective cohort study was performed in nine high school athletes engaged in hockey or football and six controls. Subjects underwent DTI pre- and postseason within a 3-month interval. One athlete was diagnosed with concussion (scanned within 72 h), and eight suffered between 26 and 399 subconcussive head blows. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in each WM voxel. Bootstrap samples were generated, and a permuted t test was used to compare voxel-wise FA/MD changes in each subject pre- vs. postseason.

Results

The percentage of WM voxels with significant (p<.05) pre–post FA changes was highest for the concussion subject (3.2%), intermediary for those with subconcussive head blows (mean 1.05%±.15%) and lowest for controls (mean 0.28%±.01%). Similarly, the percentage of WM voxels with significant MD changes was highest for the concussion subject (3.44%), intermediary for those with subconcussive head blows (mean 1.48%±.17%) and lowest for controls (mean 0.48%±.05%). Significantly changed FA and MD voxels colocalized in the concussion subject to the right corona radiata and right inferior longitudinal fasciculus.

Conclusions

Wild bootstrap analysis detected significantly changed WM in a single concussed athlete. Athletes with multiple subconcussive head blows had significant changes in a percentage of their WM that was over three times higher than controls. Efforts to understand the significance of these WM changes and their relationship to head impact forces appear warranted.  相似文献   

10.

Introduction

Diffusion tensor imaging (DTI) reveals white matter pathology in patients with multiple sclerosis (MS). A recent non-Gaussian diffusion imaging technique, q-space imaging (QSI), may provide several advantages over conventional MRI techniques in regard to in vivo evaluation of the disease process in patients with MS. The purpose of this study is to investigate the use of root mean square displacement (RMSD) derived from QSI data to characterize plaques, periplaque white matter (PWM), and normal-appearing white matter (NAWM) in patients with MS.

Methods

We generated apparent diffusion coefficient (ADC) and fractional anisotropy (FA) maps by using conventional DTI data from 21 MS patients; we generated RMSD maps by using QSI data from these patients. We used the Steel–Dwass test to compare the diffusion metrics of regions of interest in plaques, PWM, and NAWM.

Results

ADC differed (P < 0.05) between plaques and PWM and between plaques and NAWM. FA differed (P < 0.05) between plaques and NAWM. RMSD differed (P < 0.05) between plaques and PWM, plaques and NAWM, and PWM and NAWM.

Conclusion

RMSD values from QSI may reflect microstructural changes and white-matter damage in patients with MS with higher sensitivity than do conventional ADC and FA values.  相似文献   

11.

Introduction

Diffusion tensor imaging (DTI) measures in patients with multiple sclerosis (MS), particularly those measures associated with a specific white matter pathway, have consistently shown correlations with function. This study sought to investigate correlations between DTI measures in the fornix and common cognitive deficits in MS patients, including episodic memory, working memory and attention.

Materials and Methods

Patients with MS and group age- and sex-matched controls underwent high-resolution diffusion scanning (1-mm isotropic voxels) and cognitive testing. Manually drawn forniceal regions of interest were applied to individual maps of tensor-derived measures, and mean values of transverse diffusivity (TD), mean diffusivity (MD), longitudinal diffusivity (LD) and fractional anisotropy (FA) were calculated.

Results

In 40 patients with MS [mean age±S.D.= 42.55±9.1 years; Expanded Disability Status Scale (EDSS)=2.0±1.2; Multiple Sclerosis Functional Composite (MSFC) score=0.38±0.46] and 20 healthy controls (mean age±S.D.= 41.35±9.7 years; EDSS=0.0±0; MSFC score=0.74±0.24), we found that FA, MD and TD values in the fornix were significantly different between groups (P< .03), and patient performance on the Brief Visuospatial Memory Test-Revised (BVMT-R) was correlated with DTI measures (P< .03).

Discussion

These results are consistent with findings of axonal degeneration in MS and support the use of DTI as an indicator of disease progression.  相似文献   

12.

Background and Purpose

The widespread propagation of synchronized neuronal firing in seizure disorders may affect cortical and subcortical brain regions. Diffusion tensor imaging (DTI) can noninvasively quantify white matter integrity. The purpose of this study was to investigate the abnormal changes of white matter in children and adolescents with focal temporal lobe epilepsy (TLE) using DTI.

Materials and Methods

Eight patients with clinically diagnosed TLE and eight age- and sex-matched healthy controls were studied. DTI images were obtained with a 3-T magnetic resonance imaging scanner. The epileptic foci were localized with magnetoencephalography. Fractional anisotropy (FA), mean diffusivity (MD), parallel (λ||) and perpendicular (λ) diffusivities in the genu of the corpus callosum, splenium of the corpus callosum (SCC), external capsule (EC), anterior limbs of the internal capsule (AIC), and the posterior limbs of the internal capsule (PIC) were calculated. The DTI parameters between patients and controls were statistically compared. Correlations of these DTI parameters of each selected structure with age of seizure onset and duration of epilepsy were analysed.

Results

In comparison to controls, both patients' seizure ipsilateral and contralateral had significantly lower FA in the AIC; PIC and SCC and higher MD, λ|| and λ in the EC, AIC, PIC and SCC. The MD, λ|| and λ were significantly correlated with age of seizure onset in the EC and PIC. λ|| was significantly correlated with the duration of epilepsy in the EC and PIC.

Conclusion

The results of the present study indicate that children and adolescents with TLE had significant abnormalities in the white matter in the hemisphere with seizure foci. Furthermore, these abnormalities may extend to the other brain hemisphere. The age of seizure onset and duration of epilepsy may be important factors in determining the extent of influence of children and adolescents TLE on white matter.  相似文献   

13.

Background and Purpose

Human immunodeficiency virus (HIV)-associated dementia (HAD) has been extensively studied using magnetic resonance spectroscopy (MRS) at field strengths of 1.5 T. Higher magnetic field strengths (such as 3 T) allow for more reliable determination of certain compounds, such as glutamate (Glu) and glutamine (Gln). The current study was undertaken to investigate the utility of 3-T MRS for evaluating HIV+ patients with different levels of cognitive impairment with emphasis on the measurement of Glu and Glx (the sum of Glu and Gln).

Methods

Eighty-six HIV+ subjects were evaluated at 3 T using quantitative short echo time single-voxel MRS of frontal white matter (FWM) and basal ganglia (BG). Subjects were divided into three groups according to the Memorial Sloan Kettering (MSK) HIV dementia stage: 21 had normal cognition (NC) (MSK 0), 31 had mild cognitive impairment (MCI) without dementia (clinical MSK stage=0.5), and 34 had dementia (HAD) (MSK≥1). HIV+ subjects had also undergone standardized cognitive testing covering the domains of executive function, verbal memory, attention, information processing speed and motor and psychomotor speed. Between-group differences in metabolite levels in FWM and BG were evaluated using ANOVA. Pearson correlation coefficients were used to explore the associations between the Glu and Glx metabolites and neurocognitive results.

Results

FWM Glx was lower in HAD (8.1±2.1 mM) compared to both the MCI (9.17±2.1 mM) and NC groups (10.0±1.6 mM) (P=.006). FWM myo-inositol (mI) was higher in HAD (4.15±0.75 mM) compared to both MCI (3.86±0.85 mM) and NC status (3.4±0.67 mM) (P=.006). FWM Glx/creatine (Cr) was lower and FWM mI/Cr was significantly higher in the HAD compared to the MCI and NC groups (P=.01 and P=.004, respectively). BG N-acetyl aspartate (NAA) was lower in the HAD group (6.79±1.53 mM), compared to the MCI (7.5±1.06 mM) and NC (7.6±1.01 mM) groups (P=.036). Significant negative correlations were observed between Glu, Glx and NAA concentrations with Trail-Making Test B (P=.006, P=.0001 and P=.007, respectively), and significant positive correlation was found with the Digit symbol test (P=.02, P=.002 and P=.008, respectively). FWM Glx and NAA concentrations showed negative correlation with Grooved Pegboard nondominant hand (P=.02 and P=.04, respectively).

Conclusion

Patients with HAD have lower levels of Glx concentrations and Glx/Cr ratio in FWM, which was associated with impaired performance in specific cognitive domains, including executive functioning, fine motor, attention and working memory performance. Three-Tesla MRS measurements of Glx may be a useful indicator of neuronal loss/dysfunction in patients with HIV infection.  相似文献   

14.

Introduction

The aim of this study is to examine if guided prostate biopsies based on abnormalities detected by conventional and functional endorectal magnetic resonance imaging (MRI) yield a more reliable representation of the radical prostatectomy pathology and to identify probable preoperative clinical variables that stratified patients likely to harbor significant upgrading.

Patients and Methods

From April 2004 to April 2009, a review of N=70 patients records diagnosed with prostate cancer by a 3-6 core guided transrectal ultrasound (TRUS) prostate biopsy based on abnormalities detected by conventional and functional endorectal MRI and who subsequently underwent radical prostatectomy and exhibited a significant upgrading was conducted. Additionally, a multivariate analysis with a significant upgrading as the outcome was performed including the following parameters: prostate specific antigen (PSA) level, clinical stage, prostate size and duration from biopsy to radical prostatectomy.

Results

A significant upgrading was noted in only 8.5% of patients, with 1.4% exhibiting a significant downgrading and the rest 90.1% exhibiting an exact Gleason score match. No preoperative clinical variables that stratified patients likely to harbour significant upgrading were identified.

Conclusions

This type of biopsy method seems to solve the discordance between the biopsy Gleason score and radical prostatectomy pathology regardless of known preoperative clinical variables that can affect it.  相似文献   

15.

Objective

Magnetic resonance imaging (MRI) offers great potential as a sensitive and noninvasive technique for describing the alterations in mechanical properties, as shown in vitro on intervertebral disc (IVD) or cartilage tissues. However, in vivo, the IVD is submitted to complex loading stimuli. Thus, the present question focuses on the influence of the mechanical loading during an MRI acquisition on the relaxation times, magnetization transfer and diffusion parameters within the IVD.

Methods

An apparatus allowing the compression of isolated IVDs was designed and manufactured in acrylonitrile butadiene styrene. IVDs were dissected from fresh young bovine tail, measured for their thickness and submitted to compression just before the MRI acquisition. Six discs received 0% (platen positioned at the initial disc thickness), 5% (platen positioned at 95% of the initial disc thickness), 10%, 20% and 40% deformation. The MRI parameters were compared between the loading states using mean and standard deviation for T1 and T2, and matrix subtraction for Magnetization Transfer, fractional anisotropy and apparent diffusion coefficient.

Results

The compression of the IVD did not lead to any significant change of the MRI parameters, except for the diffusion that decreased in the direction of the compressive stress.

Discussion

This experimental in vitro study shows that multi-parametric MRI on isolated discs in vitro is not sensitive to compression or to the partial confined relaxation that followed the compression.  相似文献   

16.

Purpose

To remove the partial volume averaging effect of free water in MR diffusion imaging of neural tissues by use of the fluid attenuated inversion recovery (FLAIR) without the penalty of an extended scan time.

Materials and methods

The magnetic resonance images were obtained from a normal volunteer in a coronal slice orientation at 3 T with the 20-channel rf coil. In diffusion imaging only the b0 images were obtained with the FLAIR contrast while the diffusion weighted images were obtained without the FLAIR contrast. A composition of FLAIR b0 and non-FLAIR diffusion weighted images was used in calculating the diffusion tensor and fractional anisotropy after compensating the reduced signal amplitude due to the inversion recovery in the FLAIR b0 images. The fractional anisotropy of the non-FLAIR, FLAIR, and the composite methods were analyzed for the mean and histogram in the corpus callosum, cervical spine, and the fornix tracts.

Results

The partial volume averaging effect was observed in the corpus callosum, the cervical spine, and the fornix tracts in the non-FLAIR b0 and diffusion images. The partial volume averaging effect was removed in the FLAIR diffusion images which took more than twice the scan time than the non-FLAIR diffusion imaging. The proposed composite FLAIR diffusion imaging removed the partial volume averaging effect as in the FLAIR diffusion imaging. The distribution of the FA histogram was very different between the non-FLAIR and FLAIR diffusion images, while it was very similar between the FLAIR and the composite FLAIR after correcting the white matter signal in the FLAIR b0 images.

Conclusions

The proposed composite FLAIR diffusion imaging method was equally effective in removing the partial volume averaging effect as the FLAIR diffusion imaging at a limited increase of the scan time since only a small number of b0 images needed to be obtained with the FLAIR contrast.  相似文献   

17.
Degeneration of the basal forebrain (BF) is detected early in the course of Alzheimer's disease (AD). Reduction in the number of BF cholinergic (ChAT) neurons associated with age-related hippocampal cholinergic neuritic dystrophy is described in the 3xTg-AD mouse model; however, no prior diffusion MRI (dMRI) study has explored the presence of BF alterations in this model. Here we investigated the ability of diffusion MRI (dMRI) to detect abnormalities in BF microstructure for the 3xTg-AD mouse model, along with related pathology in the hippocampus (HP) and white matter (WM) tracks comprising the septo-hippocampal pathway. 3xTg-AD and normal control (NC) mice were imaged in vivo using the specific dMRI technique known as diffusional kurtosis imaging (DKI) at 2, 8, and 15 months of age, and 8 dMRI parameters were measured at each time point. Our results revealed significant lower dMRI values in the BF of 2 months-old 3xTg-AD mice compared with NC mice, most likely related to the increased number of ChAT neurons seen in this AD mouse model at this age. They also showed significant age-related dMRI changes in the BF of both groups between 2 and 8 months of age, mainly a decrease in fractional anisotropy and axial diffusivity, and an increase in radial kurtosis. These dMRI changes in the BF may be reflecting the complex aging and pathological microstructural changes described in this region. Group differences and age-related changes were also observed in the HP, fimbria (Fi) and fornix (Fx). In the HP, diffusivity values were significantly higher in the 2 months-old 3xTg-AD mice, and the HP of NC mice showed a significant increase in axial kurtosis after 8 months, reflecting a normal pattern of increased fiber density complexity, which was not seen in the 3xTg-AD mice. In the Fi, mean and radial diffusivity values were significantly higher, and fractional anisotropy, radial kurtosis and kurtosis fractional anisotropy were significantly lower in the 2 months-old 3xTg-AD mice. The age trajectories for both NC and TG mice in the Fi and Fx were similar between 2 and 8 months, but after 8 months there was a significant decrease in diffusivity metrics associated with an increase in kurtosis metrics in the 3xTg-AD mice. These later HP, Fi and Fx dMRI changes probably reflect the growing number of dystrophic neurites and AD pathology progression in the HP, accompanied by WM disruption in the septo-hippocampal pathway. Our results demonstrate that dMRI can detect early cytoarchitectural abnormalities in the BF, as well as related aging and neurodegenerative changes in the HP, Fi and Fx of the 3xTg-AD mice. Since DKI is widely available on clinical scanners, these results also support the potential of the considered dMRI parameters as in vivo biomarkers for AD disease progression.  相似文献   

18.

Purpose

To describe the MR appearances of hepatic sarcoidosis in patients with chronic liver disease and correlate the results with clinical stage of disease as measured with the Mayo end-stage liver disease (MELD) score.

Materials and methods

Twenty patients with chronic liver disease and histopathological diagnosis of hepatic sarcoidosis who underwent MR imaging were included in this study. Two abdominal radiologists retrospectively reviewed all images for the presence of cirrhosis, imaging pattern of the liver, intrahepatic biliary dilatation, presence of areas of parenchymal atrophy, presence of splenic nodules and lymphadenopathy. Imaging findings were correlated with the MELD score.

Results

Of the patients, 14/20 had imaging findings of cirrhosis, 9/20 had a large macronodular pattern of liver cirrhosis and 5/20 had a diffuse pattern of liver cirrhosis. Peripheral wedge-shaped areas of parenchymal atrophy were observed in 10 patients. The combination of a central macronodular pattern and peripheral atrophy was observed in 9/20 patients. The pattern of cirrhosis had statistically significant correlation with the presence of wedge-shaped areas of parenchymal atrophy (p < 0.005). No statistically significant difference was revealed between the clinical score of patients who had imaging findings consistent with cirrhosis and those who did not.

Conclusion

MR imaging appearances of chronic sarcoid liver disease are diverse and do not appear to correlate with severity of clinical disease. Large central regenerative nodules and wedge-shaped areas of peripheral parenchymal atrophy are frequent findings and may help to suggest the diagnosis.  相似文献   

19.

Purpose

To investigate diffusion-weighted (DWI) and dynamic contrast-enhanced MR imaging (DCE-MRI) as early response predictors in cervical cancer patients who received concurrent chemoradiotherapy (CCRT).

Materials and methods

Sixteen patients with cervical cancer underwent DWI and DCE-MRI before CCRT (preTx), at 1 week (postT1) and 4 weeks (postT2) after initiating treatment, and 1 month after the end of treatment (postT3). At each point, apparent diffusion coefficient (ADC) and DCE-MRI parameters were measured in tumors and gluteus muscles (GM). Tumor response was correlated with imaging parameters or changes in imaging parameters at each point.

Results

At each point, ADC, Ktrans and Ve in tumors showed significant changes (P < 0.05), as compared with those of GM (P > 0.05). PostT1 tumor ADCs showed a significant correlation with tumor size response at postT2 (P = 0.041), and changes in tumor ADCs at postT1 had a significant correlation with tumor size (P = 0.04) and volume response (P = 0.003) at postT2. In tumors, preTx Ktrans and Ve showed significant correlations with tumor size at postT3 (P = 0.011) and tumor size response at postT2 (P = 0.019), respectively.

Conclusion

DWI and DCE-MRI, as early biomarkers, have the potential to evaluate therapeutic responses to CCRT in cervical cancers.  相似文献   

20.

Purpose

To compare absolute cerebral blood flow (CBF) estimates obtained by model-free arterial spin labeling (ASL) and dynamic susceptibility contrast MRI (DSC-MRI), corrected for partial volume effects (PVEs).

Methods

CBF was measured using DSC-MRI and model-free ASL (quantitative signal targeting with alternating radiofrequency labeling of arterial regions) at 3 T in 15 subjects with brain tumor, and the two modalities were compared with regard to CBF estimates in normal gray matter (GM) and DSC-to-ASL CBF ratios in selected tumor regions. The DSC-MRI CBF maps were calculated using a global arterial input function (AIF) from the sylvian-fissure region, but, in order to minimize PVEs, the AIF time integral was rescaled by a venous output function time integral obtained from the sagittal sinus.

Results

In GM, the average DSC-MRI CBF estimate was 150±45 ml/(min 100 g) (mean±SD) while the corresponding ASL CBF was 44±10 ml/(min 100 g). The linear correlation between GM CBF estimates obtained by DSC-MRI and ASL was r=.89, and observed DSC-to-ASL CBF ratios differed by less than 3% between GM and tumor regions.

Conclusions

A satisfactory positive linear correlation between the CBF estimates obtained by model-free ASL and DSC-MRI was observed, and DSC-to-ASL CBF ratios showed no obvious tissue dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号