首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
In the clinical MRI practice, it is common to assess liver iron overload by T2* multi-echo gradient-echo images. However, there is no full consensus about the best image analysis approach for the T2* measurements. The currently used methods involve manual drawing of a region of interest (ROI) within MR images of the liver. Evaluation of a representative liver T2* value is done by fitting an appropriate model to the signal decay within the ROIs vs. the echo time. The resulting T2* value may depend on both ROI placement and choice of the signal decay model. The aim of this study was to understand how the choice of the analysis methodology may affect the accuracy of T2* measurements. A software model of the iron overloaded liver was inferred from MR images acquired from 40 thalassemia major patients. Different image analysis methods were compared exploiting the developed software model. Moreover, a method for global semiautomatic T2* measurement involving the whole liver was developed. The global method included automatic segmentation of parenchyma by an adaptive fuzzy-clustering algorithm able to compensate for signal inhomogeneities. Global liver T2* value was evaluated using a pixel-wise technique and an optimized signal decay model. The global approach was compared with the ROI-based approach used in the clinical practice. For the ROI-based approach, the intra-observer and inter-observer coefficients of variation (CoVs) were 3.7% and 5.6%, respectively. For the global analysis, the CoVs for intra-observers and inter-observers reproducibility were 0.85% and 2.87%, respectively. The variability shown by the ROI-based approach was acceptable for use in the clinical practice; however, the developed global method increased the accuracy in T2* assessment and significantly reduced the operator dependence and sampling errors. This global approach could be useful in the clinical arena for patients with borderline liver iron overload and/or requiring follow-up studies.  相似文献   

2.

Purpose

To evaluate the liver-to-muscle signal intensity and R2* methods to gain a transferable, clinical application for liver iron measurement.

Materials and Methods

Sixteen liver phantoms and 33 human subjects were examined using three 1.5-T MRI scanners from two different vendors. Phantom-to-muscle and liver-to-muscle signal intensity ratios were analyzed to determine MRI estimated phantom and hepatic iron concentration (M-PIC and M-HIC, respectively). R2* was calculated for the phantoms and the liver of human subjects. Seven patients' biochemical hepatic iron concentration was obtained.

Results

M-PIC and R2* results of three scanners correlated linearly to phantom iron concentrations (r=0.984 to 0.989 and r=0.972 to 0.981, respectively), and no significant difference between the scanners was found (P=.482 and P=.846, respectively) in vitro. The patients' R2* correlated linearly to M-HIC of the standard scanner (r=0.981). M-HIC values did not differ from those obtained from the biopsy specimens (P=.230). The difference in M-HIC was significant, but the difference in R2* was not significant between the scanners (P<.0001 and P=.505, respectively) in vivo.

Conclusion

Both methods, M-HIC and R2*, are reliable iron concentration indicators with linear dependence on iron concentration in vivo and in vitro. The R2* method was found to be comparable among different scanners. Transferability testing is needed for the use of the methods at various scanners.  相似文献   

3.
A magnetic resonance imaging cardiac magnetic susceptometry (MRI-CS) technique for assessing cardiac tissue iron concentration based on phase mapping was developed. Normal control subjects (n=9) and thalassemia patients (n=13) receiving long-term blood transfusion therapy underwent MRI-CS and MRI measurements of the cardiac relaxation rate R2*. Using MRI-CS, subepicardium and subendocardium iron concentrations were quantified exploiting the hemosiderin/ferritin iron specific magnetic susceptibility. The average of subepicardium and subendocardium iron concentrations and R2* of the septum were found to be strongly correlated (r=0.96, P<.0001), and linear regression analysis yielded CIC (μg Fe/gwet tissue)=(6.4±0.4)·R2* septum (s−1) − (120±40). The results demonstrated that septal R2* indeed measures cardiac iron level.  相似文献   

4.
Measurement of cardiac T2 has emerged as an important tool to noninvasively quantify cardiac iron concentration in order to detect preclinical evidence of toxic levels and titrate chelation therapy. However, there exists variation among practitioners in cardiac T2 measurement methods. This study examines the impact of different imaging parameters and data analysis techniques on the calculated cardiac R2 (1/T2) in patients at risk for cardiac siderosis. The study group consisted of 36 patients with thalassemia syndromes who had undergone clinical magnetic resonance imaging assessment of cardiac siderosis using a standardized protocol and who were selected to yield a broad range of cardiac R2 values. Cardiac R2 measurements were performed on a 1.5-T scanner using an electrocardiogram-gated, segmented, multiecho gradient echo sequence obtained in a single breath-hold. R2 was calculated from the signal intensity versus echo time data in the ventricular septum on a single midventricular short-axis slice. There was good agreement between R2 measured with a blood suppression prepulse (black blood technique) and without (mean difference 6.0 ± 10.7 Hz). The black blood technique had superior within-study reproducibility (R2 mean difference 1.6 ± 8.6 Hz versus 2.7 ± 14.6 Hz) and better interobserver agreement (R2 mean difference 3.4 ± 8.2 Hz versus 8.3 ± 16.5 Hz). With the same minimum echo time, the use of small (1.0 ms) versus large (2.2 ms) echo spacing had minimal impact on cardiac R2 (mean difference 0.3 ± 8.7 Hz). The application of a region-of-interest-based versus a pixel-based data analysis also had little effect on cardiac R2 calculation (mean difference 8.4 ± 6.9 Hz). With black blood images, fitting the signal curve to a monoexponential decay or to a monoexponential decay with a constant offset yielded similar R2 values (mean difference 3.4 ± 8.1 Hz). In conclusion, the addition of a blood suppression prepulse for cardiac R2 measurement yields similar R2 values and improves reproducibility and interobserver agreement. The findings regarding other variations may be helpful in establishing a broadly accepted imaging and analysis technique for cardiac R2 calculation.  相似文献   

5.

Purpose

To investigate the feasibility of combining GESFIDE with PROPELLER sampling approaches for simultaneous abdominal R2 and R2* mapping.

Materials and Methods

R2 and R2* measurements were performed in 9 healthy volunteers and phantoms using the GESFIDE-PROPELLER and the conventional Cartesian-sampling GESFIDE approaches.

Results

Images acquired with the GESFIDE-PROPELLER sequence effectively mitigated the respiratory motion artifacts, which were clearly evident in the images acquired using the conventional GESFIDE approach. There was no significant difference between GESFIDE-PROPELLER and reference MGRE R2* measurements (p = 0.162) whereas the Cartesian-sampling based GESFIDE methods significantly overestimated R2* values compared to MGRE measurements (p < 0.001).

Conclusion

The GESFIDE-PROPELLER sequence provided high quality images and accurate abdominal R2 and R2* maps while avoiding the motion artifacts common to the conventional Cartesian-sampling GESFIDE approaches.  相似文献   

6.
The aim of this study was to investigate the benefits arising from the use of a multiecho sequence for susceptibility-weighted phase imaging using a quantitative comparison with a standard single-echo acquisition. Four healthy adult volunteers were imaged on a clinical 3-T system using a protocol comprising two different three-dimensional susceptibility-weighted gradient-echo sequences: a standard single-echo sequence and a multiecho sequence. Both sequences were repeated twice in order to evaluate the local noise contribution by a subtraction of the two acquisitions. For the multiecho sequence, the phase information from each echo was independently unwrapped, and the background field contribution was removed using either homodyne filtering or the projection onto dipole fields method. The phase information from all echoes was then combined using a weighted linear regression. R2 maps were also calculated from the multiecho acquisitions. The noise standard deviation in the reconstructed phase images was evaluated for six manually segmented regions of interest (frontal white matter, posterior white matter, globus pallidus, putamen, caudate nucleus and lateral ventricle). The use of the multiecho sequence for susceptibility-weighted phase imaging led to a reduction of the noise standard deviation for all subjects and all regions of interest investigated in comparison to the reference single-echo acquisition. On average, the noise reduction ranged from 18.4% for the globus pallidus to 47.9% for the lateral ventricle. In addition, the amount of noise reduction was found to be strongly inversely correlated to the estimated R2 value (R=-0.92). In conclusion, the use of a multiecho sequence is an effective way to decrease the noise contribution in susceptibility-weighted phase images, while preserving both contrast and acquisition time. The proposed approach additionally permits the calculation of R2 maps.  相似文献   

7.

Objectives

To evaluate the performance of region-of-interest (ROI)-based MRI R2* measurements by using the first-moment noise-corrected model (M1NCM) to correct the non-central Chi noise in magnitude images from phased arrays for hepatic iron content (HIC) assessment.

Methods

R2* values were quantified using the M1NCM model. Three approaches were employed to determine the representative R2*: fitting of the ROI-averaged signal (average-then-fit, ATF); outputting the median and mean of R2*s from the pixel-wise fitting of decay signals within the ROI (denoted as PWFmed and PWFmea, respectively). The accuracy and precision of the three approaches were evaluated on synthesized data. The agreement among these approaches and their intra- and inter-observer reproducibility were assessed on 105 thalassaemia major patients.

Results

Simulations showed that ATF consistently yielded the highest accuracy and precision at varying noise levels. By contrast, PWFmed and PWFmea slightly and significantly overestimated high R2* at poor signal-to-noise ratios, respectively. Patient study showed that ATF agreed well with PWFmed, whereas PWFmea produced high R2* measurements for patients with severe HIC. No significant difference was observed in the reproducibility of the three approaches.

Conclusions

PWFmea tends to overestimate high R2*, whereas ATF and PWFmed can produce more accurate R2* measurements for HIC assessment.  相似文献   

8.

Purpose

The purpose was to validate diffusion-weighted imaging (DWI) in the assessment of hepatic metastases compared with superparamagnetic iron oxide (SPIO)-enhanced magnetic resonance imaging.

Materials and Methods

For 21 consecutive patients with 160 metastases from extrahepatic malignancy and 25 benign focal lesions, two radiologists evaluated four separate review sessions (I, SPIO-enhanced T2?-weighted images; II, precontrast DWI; III, SPIO-enhanced T2?-weighted images and precontrast DWI; IV, SPIO-enhanced T2?-weighted images plus precontrast and SPIO-enhanced DWI) and assigned confidence levels using a five-grade scale for each hepatic lesion.

Results

The Az values after receiver operating characteristic curve analysis for Reader 1 and Reader 2 were 0.80 and 0.75 on session I, 0.91 and 0.91 on session II, 0.97 and 0.96 on session III and 0.96 and 0.96 on session IV, respectively. The Az value of session II was significantly higher than that of session I (Reader 1, P=.004; Reader 2, P<.001), and that of session III was significantly higher than that of session I (P<.001 for each reader) or session II (Reader 1, P=.004; Reader 2, P=.003). Although there was no significant difference of Az value between session III and session IV (Reader 1, P=.231; Reader 2, P=.878), the sensitivity improved for session IV compared with that for session III (Reader 1, P=.031; Reader 2, P=.039).

Conclusion

In the assessment of hepatic metastases, DWI can provide more accurate information than can SPIO-enhanced images. Diagnostic accuracy can be increased even more through the combination of both techniques.  相似文献   

9.
Predictive simulations of the defect population evolution in materials under or after irradiation can be performed in a multi-scale approach, where the atomistic properties of defects are determined by electronic structure calculations based on the Density Functional Theory and used as input for kinetic simulations covering macroscopic time and length scales. Recent advances obtained in iron are presented. The determination of the 3D migration of self-interstitial atoms instead of a fast one-dimensional glide induced an overall revision of the widely accepted picture of radiation damage predicted by previously existing empirical potentials. A coupled ab initio and mesoscopic kinetic Monte Carlo simulation provided strong evidence to clarify controversial interpretations of electrical resistivity recovery experiments concerning the mobility of vacancies, self-interstitial atoms, and their clusters. The results on the dissolution and migration properties of helium in α-Fe were used to parameterize Rate Theory models and new inter-atomic potentials, which improved the understanding of fusion reactor materials behavior. Finally, the effects of carbon, present in all steels as the principal hardening element, are also shown. To cite this article: C.C. Fu, F. Willaime, C. R. Physique 9 (2008).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号