首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Synchronization of networked phase oscillators depends essentially on the correlation between the topological structure of the graph and the dynamical property of the elements.We propose the concept of 'reduced frequency',a measure which can quantify natural frequencies of each pair of oscillators.Then we introduce an evolving network whose linking rules are controlled by its own dynamical property.The simulation results indicate that when the linking probability positively correlates with the reduced frequency,the network undergoes a first-order phase transition.Meanwhile,we discuss the circumstance under which an explosive synchronization can be ignited.The numerical results show that the peculiar butterfly shape correlation between frequencies and degrees of the nodes contributes to an explosive synchronization transition.  相似文献   

2.
The synchronization transition of correlated ensembles of coupled Kuramoto oscillators on sparse random networks is investigated. Extensive numerical simulations show that correlations between the native frequencies of adjacent oscillators on the network systematically shift the critical point as well as the critical exponents characterizing the transition. Negative correlations imply an onset of synchronization for smaller coupling, whereas positive correlations shift the critical coupling towards larger interaction strengths. For negatively correlated oscillators the transition still exhibits critical behaviour similar to that of the all-to-all coupled Kuramoto system, while positive correlations change the universality class of the transition depending on the correlation strength. Crucially, the paper demonstrates that the synchronization behaviour is not only determined by the coupling architecture, but also strongly influenced by the oscillator placement on the coupling network.  相似文献   

3.
Amit Sharma 《Physics letters. A》2019,383(17):2051-2055
We report the emergence of an explosive synchronization transition in the identical oscillators interacting indirectly through a network of dynamical agents. The transition from incoherent state to coherent state and vice–versa in these coupled oscillator exhibits an abrupt as well as irreversible. Such transition depends on the network topology as well as the interaction between the oscillators and dynamical agents rather than degree-frequency correlation in the network of oscillators. The occurrence of explosive synchronization is studied in details by using an appropriate order parameter for limit-cycle oscillators with respect to the different parameters like rewiring probability, average degree, and diffusion rate in dynamical agents.  相似文献   

4.
We analyze the phenomenon of frequency clustering in a system of coupled phase oscillators. The oscillators, which in the absence of coupling have uniformly distributed natural frequencies, are coupled through a small-world network, built according to the Watts-Strogatz model. We study the time evolution and determine variations in the transient times depending on the disorder of the network and on the coupling strength. We investigate the effects of fluctuations in the average frequencies, and discuss the definition of the threshold for synchronization. We characterize the structure of clusters and the distribution of cluster sizes in the synchronization transition, and define suitable order parameters to describe the aggregation of the oscillators as the network disorder and the coupling strength change. The non-monotonic behavior observed in some order parameters is related to fluctuations in the mean frequencies.  相似文献   

5.
We introduce a model to study the effects of coupling-frequency correlations on synchronization in complete graphs. When the linear correlation is adopted, we find a symmetric network where frequencies of the oscillators are distributed in a bipolar way, having values either −1 or +1. In the network, the oscillators either all drift or all phase-locked. The behavior can separate qualitatively two other types of correlations, where slow and fast oscillators can remain unsynchronized respectively. It is obvious that the weighting exponent plays an important role. Besides, the numerical simulation results indicate that the linear correlation has the best performance in synchronization ability among three types of correlations in view of the average node cost.  相似文献   

6.
We investigate the effects that network topology, natural frequency distribution, and system size have on the path to global synchronization as the overall coupling strength between oscillators is increased in a Kuramoto network. In particular, we study the scenario recently found by Go?mez-Garden?es et al. [Phys. Rev. E 73, 056124 (2006)] in which macroscopic global synchronization emerges through a process whereby many small synchronized clusters form, grow, and merge, eventually leading to a macroscopic giant synchronized component. Our main result is that this scenario is robust to an increase in the number of oscillators or a change in the distribution function of the oscillators' natural frequencies, but becomes less prominent as the number of links per oscillator increases.  相似文献   

7.
A recent study has found an explosive synchronization in a Kurammoto model on scale-free networks when the natural frequencies of oscillators are equal to their degrees. In this work, we introduce a quantity to characterize the correlation between the structural and the dynamical properties and investigate the impacts of the correlation on the synchronization transition in the Kuramoto model on scale-free networks. We find that the synchronization transition may be either a continuous one or a discontinuous one depending on the correlation and that strong correlation always postpones both the transitions from the incoherent state to a synchronous one and the transition from a synchronous state to the incoherent one. We find that the dependence of the synchronization transition on the correlation is also valid for other types of distributions of natural frequency.  相似文献   

8.
An approach is presented for extracting phase equations from multivariate time series data recorded from a network of weakly coupled limit cycle oscillators. Our aim is to estimate important properties of the phase equations including natural frequencies and interaction functions between the oscillators. Our approach requires the measurement of an experimental observable of the oscillators; in contrast with previous methods it does not require measurements in isolated single or two-oscillator setups. This noninvasive technique can be advantageous in biological systems, where extraction of few oscillators may be a difficult task. The method is most efficient when data are taken from the nonsynchronized regime. Applicability to experimental systems is demonstrated by using a network of electrochemical oscillators; the obtained phase model is utilized to predict the synchronization diagram of the system.  相似文献   

9.
Synchronization is a phenomenon that is ubiquitous in engineering and natural ecosystems.The study of explosive synchronization on a single-layer network gives the critical transition coupling strength that causes explosive synchronization.However, no significant findings have been made on multi-layer complex networks.This paper proposes a frequency-weighted Kuramoto model on a two-layer network and the critical coupling strength of explosive synchronization is obtained by both theoretical analysis and numerical validation.It is found that the critical value is affected by the interaction strength between layers and the number of network oscillators.The explosive synchronization will be hindered by enhancing the interaction and promoted by increasing the number of network oscillators.Our results have importance across a range of engineering and biological research fields.  相似文献   

10.
In this work, we study the collective dynamics of phase oscillators in a mobile ad hoc network whose topology changes dynamically. As the network size or the communication radius of individual oscillators increases, the topology of the ad hoc network first undergoes percolation, forming a giant cluster, and then gradually achieves global connectivity. It is shown that oscillator mobility generally enhances the coherence in such networks. Interestingly, we find a new type of phase synchronization/clustering, in which the phases of the oscillators are distributed in a certain narrow range, while the instantaneous frequencies change signs frequently, leading to shuttle-run-like motion of the oscillators in phase space. We conduct a theoretical analysis to explain the mechanism of this synchronization and obtain the critical transition point.  相似文献   

11.
We investigate the spatiotemporal dynamics of a large array of laser oscillators. The oscillators are locally coupled and their natural frequencies are randomly detuned. We show that synchronization of the array elements results in localized excitations wandering along well-defined trajectories.  相似文献   

12.
《Physica A》2006,371(2):790-794
We investigate collective behaviors of coupled phase oscillators on an extended network model which can develop two fundamentally different topologies, scale-free or exponential. Each component of the network is assumed as an oscillator and that each interacts with the others following the Kuramoto model. The order parameters that measure synchronization of phases and frequencies are computed by means of dynamic simulations. It is found that system's collective behaviors exhibit strong dependence on local events: addition of new links will improve network synchronizability while rewiring of links will decrease synchronization.  相似文献   

13.
《Physics letters. A》2020,384(35):126881
Recently, the explosive synchronization (ES) has attracted great interests. Motivated by the recent dynamic framework of complex network, we focus on the network of mobile oscillators and study synchronization phenomenon. The local synchronous order parameter of the neighbors of the oscillator is used as the controllable variable to adjust the coupling strength of the oscillator. Hence, it can be seen as a kind of adaptive strategy. By numerical simulation, we find that ES can be observed in the dynamic network of mobile oscillators, accompanying with hysteresis loop, as the coupling strength increases gradually. It is found that the critical value of coupling strength and hysteresis loop width is affected by the natural frequency distribution and the number of neighbors the oscillator owning. It can be deduced that ES will be motivated by increasing the number of oscillators in the network. Meanwhile, our results are feasible to different natural frequency distributions, such as Lorentzian, Gaussian power-law, and Rayleigh distribution, whether it is symmetric or not.  相似文献   

14.
By a small-size complex network of coupled chaotic Hindmarsh-Rose circuits, we study experimentally the stability of network synchronization to the removal of shortcut links. It is shown that the removal of a single shortcut link may destroy either completely or partially the network synchronization. Interestingly, when the network is partially desynchronized, it is found that the oscillators can be organized into different groups, with oscillators within each group being highly synchronized but are not for oscillators from different groups, showing the intriguing phenomenon of cluster synchronization. The experimental results are analyzed by the method of eigenvalue analysis, which implies that the formation of cluster synchronization is crucially dependent on the network symmetries. Our study demonstrates the observability of cluster synchronization in realistic systems, and indicates the feasibility of controlling network synchronization by adjusting network topology.  相似文献   

15.
A generalization of the Kuramoto model in which oscillators are coupled to the mean field with random signs is investigated in this work. We focus on a situation in which the natural frequencies of oscillators follow a uniform probability density. By numerically simulating the model, we find that the model supports a modulated travelling wave state except for already reported π state and travelling wave state in the one with natural frequencies followingLorenztian probability density or a delta function. The dependence of the observed dynamics on the parameters of the model is explored and we find that the onset of synchronization in the model displays a non-monotonic dependence on both positive and negative coupling strength.  相似文献   

16.
In this study, we consider the emergence of explosive synchronization in scale-free networks by considering the Kuramoto model of coupled phase oscillators. The natural frequencies of oscillators are assumed to be correlated with their degrees and frustration is included in the system. This assumption can enhance or delay the explosive transition to synchronization. Interestingly, a de-synchronization phenomenon occurs and the type of phase transition is also changed. Furthermore, we provide an analytical treatment based on a star graph, which resembles that obtained in scale-free networks. Finally, a self-consistent approach is implemented to study the de-synchronization regime. Our findings have important implications for controlling synchronization in complex networks because frustration is a controllable parameter in experiments and a discontinuous abrupt phase transition is always dangerous in engineering in the real world.  相似文献   

17.
We investigate the transition to synchronization in ensembles of coupled oscillators with quenched disorder. We find that small coupling is able to increase the frequency disorder and to induce a spread of oscillator frequencies. This new effect of anomalous desynchronization is studied with numerical and analytical means in a large class of systems including R?ssler, Lotka-Volterra, Landau-Stuart, and Van-der-Pol oscillators. We show that anomalous effects arise due to an interplay between nonisochronicity and natural frequency of each oscillator and can either increase or inhibit synchronization in the ensemble. This provides a novel possibility to control the synchronization transition in nonidentical systems by suitably distributing the disorder among system parameters. We conjecture that our results are of relevance for biological systems.  相似文献   

18.
As exemplified by power grids and large-scale brain networks, some functions of networks consisting of phase oscillators rely on not only frequency synchronization, but also phase synchronization among the oscillators. Nevertheless, even after the oscillators reach frequency-synchronized status, the phase synchronization is not always accomplished because the phase difference among the oscillators is often trapped at non-zero constant values. Such phase difference potentially results in inefficient transfer of power or information among the oscillators, and avoids proper and efficient functioning of the networks. In the present study, we newly define synchronization cost by using the phase difference among the frequency-synchronized oscillators, and investigate the optimal network structure with the minimum synchronization cost through rewiring-based optimization. By using the Kuramoto model, we demonstrate that the cost is minimized in a network with a rich-club topology, which comprises the densely-connected center nodes and low-degree peripheral nodes connecting with the center module. We also show that the network topology is characterized by its bimodal degree distribution, which is quantified by Wolfson’s polarization index.  相似文献   

19.
We investigate how correlations between the diversity of the connectivity of networks andthe dynamics at their nodes affect the macroscopic behavior. In particular, we study thesynchronization transition of coupled stochastic phase oscillators that represent the nodedynamics. Crucially in our work, the variability in the number of connections of the nodesis correlated with the width of the frequency distribution of the oscillators. Bynumerical simulations on Erdös-Rényi networks, where the frequencies of the oscillatorsare Gaussian distributed, we make the counterintuitive observation that an increase in thestrength of the correlation is accompanied by an increase in the critical couplingstrength for the onset of synchronization. We further observe that the critical couplingcan solely depend on the average number of connections or even completely lose itsdependence on the network connectivity. Only beyond this state, a weighted mean-fieldapproximation breaks down. If noise is present, the correlations have to be stronger toyield similar observations.  相似文献   

20.
张智  傅忠谦  严钢 《中国物理 B》2009,18(6):2209-2212
Synchronizability of complex oscillators networks has attracted much research interest in recent years. In contrast, in this paper we investigate numerically the synchronization speed, rather than the synchronizability or synchronization stability, of identical oscillators on complex networks with communities. A new weighted community network model is employed here, in which the community strength could be tunable by one parameter δ. The results showed that the synchronization speed of identical oscillators on community networks could reach a maximal value when δ is around 0.1. We argue that this is induced by the competition between the community partition and the scale-free property of the networks. Moreover, we have given the corresponding analysis through the second least eigenvalue λ2 of the Laplacian matrix of the network which supports the previous result that the synchronization speed is determined by the value of λ2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号