首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We deduce the canonical brackets for a two (1+1)-dimensional (2D) free Abelian 1-form gauge theory by exploiting the beauty and strength of the continuous symmetries of a Becchi-Rouet-Stora-Tyutin (BRST) invariant Lagrangian density that respects, in totality, six continuous symmetries. These symmetries entail upon this model to become a field theoretic example of Hodge theory. Taken together, these symmetries enforce the existence of exactly the same canonical brackets amongst the creation and annihilation operators that are found to exist within the standard canonical quantization scheme. These creation and annihilation operators appear in the normal mode expansion of the basic fields of this theory. In other words, we provide an alternative to the canonical method of quantization for our present model of Hodge theory where the continuous internal symmetries play a decisive role. We conjecture that our method of quantization is valid for a class of field theories that are tractable physical examples for the Hodge theory. This statement is true in any arbitrary dimension of spacetime.  相似文献   

2.
We demonstrate that the four-dimensional (4D) ((3+1)-dimensional) free Abelian 2-form gauge theory presents a tractable field-theoretical model for the Hodge theory where the well-defined symmetry transformations correspond to the de Rham cohomological operators of differential geometry. The conserved charges, corresponding to the above continuous symmetry transformations, obey an algebra that is reminiscent of the algebra obeyed by the cohomological operators. The discrete symmetry transformation of the theory represents the realization of the Hodge duality operation that exists in the relationship between the exterior and co-exterior derivatives of differential geometry. Thus, we provide the realizations of all the mathematical quantities, associated with the de Rham cohomological operators, in the language of the symmetries of the present 4D free Abelian 2-form gauge theory.  相似文献   

3.
We demonstrate a few striking similarities and some glaring differences between (i) the free four- (3+1)-dimensional (4D) Abelian 2-form gauge theory, and (ii) the anomalous two- (1+1)-dimensional (2D) Abelian 1-form gauge theory, within the framework of Becchi–Rouet–Stora–Tyutin (BRST) formalism. We demonstrate that the Lagrangian densities of the above two theories transform in a similar fashion under a set of symmetry transformations even though they are endowed with a drastically different variety of constraint structures. With the help of our understanding of the 4D Abelian 2-form gauge theory, we prove that the gauge-invariant version of the anomalous 2D Abelian 1-form gauge theory is a new field-theoretic model for the Hodge theory where all the de Rham cohomological operators of differential geometry find their physical realizations in the language of proper symmetry transformations. The corresponding conserved charges obey an algebra that is reminiscent of the algebra of the cohomological operators. We briefly comment on the consistency of the 2D anomalous 1-form gauge theory in the language of restrictions on the harmonic state of the (anti-) BRST and (anti-) co-BRST invariant version of the above 2D theory.  相似文献   

4.
We give a mathematical construction of Euclidean quantum field theory on certain curved backgrounds. We focus on generalizing Osterwalder Schrader quantization, as these methods have proved useful to establish estimates for interacting fields on flat space-times. In this picture, a static Killing vector generates translations in Euclidean time, and the role of physical positivity is played by positivity under reflection of Euclidean time. We discuss the quantization of flows which correspond to classical space-time symmetries, and give a general set of conditions which imply that broad classes of operators in the classical picture give rise to well-defined operators on the quantum-field Hilbert space. In particular, Killing fields on spatial sections give rise to unitary groups on the quantum-field Hilbert space, and corresponding densely-defined self-adjoint generators. We construct the Schrödinger representation using a method which involves localizing certain integrals over the full manifold to integrals over a codimension-one submanifold. This method is called sharp-time localization, and implies reflection positivity.  相似文献   

5.
In this paper, we investigate the generalized Saez–Ballester scalar–tensor theory of gravity via Noether gauge symmetry (NGS) in the background of Bianchi type I cosmological spacetime. We start with the Lagrangian of our model and calculate its gauge symmetries and corresponding invariant quantities. We obtain the potential function for the scalar field in the exponential form. For all the symmetries obtained, we determine the gauge functions corresponding to each gauge symmetry which include constant and dynamic gauge. We discuss cosmological implications of our model and show that it is compatible with the observational data.  相似文献   

6.
A complete canonical formulation of the BRST theory of systems with redundant gauge symmetries is presented. These systems includep-form gauge fields, the superparticle, and the superstring. We first define the Koszul-Tate differential and explicitly show how the introduction of the momenta conjugate to the ghosts of ghosts makes it acyclic. The global existence of the BRST generator is then demonstrated, and the BRST charge is proved to be unique up to canonical transformations in the extended phase space, which includes the ghosts. Finally, the BRST cohomology in classical mechanics is investigated and shown to be equal to the cohomology of the exterior derivative along the gauge orbits, as in the irreducible case. This is done by re-expressing the exterior algebra along the gauge orbits as a free differential algebra containing generators of higher degree, which are identified with the ghosts of ghosts. The quantum cohomology is not dealt with.Aspirant du Fonds National de la Recherche Scientifique (Belgium)Chercheur qualifié au Fonds National de la Recherche Scientifique (Belgium)  相似文献   

7.
In the new framework of gravitational quantum field theory (GQFT) with spin and scaling gauge invariance developed in Phys. Rev. D 93 (2016) 024012-1, we make a perturbative expansion for the full action in a background field which accounts for the early inflationary universe. We decompose the bicovariant vector fields of gravifield and spin gauge field with Lorentz and spin symmetries SO(1,3) and SP(1,3) in biframe spacetime into SO(3) representations for deriving the propagators of the basic quantum fields and extract their interaction terms. The leading order Feynman rules are presented. A tree-level 2 to 2 scattering amplitude of the Dirac fermions, through a gravifield and a spin gauge field, is calculated and compared to the Born approximation of the potential. It is shown that the Newton's gravitational law in the early universe is modified due to the background field. The spin dependence of the gravitational potential is demonstrated.  相似文献   

8.
9.
Supersymmetry generators are constructed from the physical operators in a quantum field theory of interacting Bose and Fermi fields where a soliton is present. These supersymmetry generators obey a standard supersymmetry algebra with a central charge and can be used to give an algebraic proof of charge fractionalization of the soliton ground state.  相似文献   

10.
Gauge bosons associated with unbroken gauge symmetries, under which all standard model fields are singlets, may interact with ordinary matter via higher-dimensional operators. A complete set of dimension-six operators involving a massless U(1) field, gamma('), and standard model fields is presented. The mu-->egamma(') decay, primordial nucleosynthesis, star cooling, and other phenomena set lower limits on the scale of chirality-flip operators in the 1-15 TeV range if the operators have coefficients given by the corresponding Yukawa couplings. Simple renormalizable models induce gamma(') interactions with leptons or quarks at two loops, and may provide a cold dark matter candidate.  相似文献   

11.
We apply BRST method to the self-dual Chern-Simons gauge theory with matter fields and the generators of symmetries of the system from an elegant Lie algebra structure under the operation of Poisson bracket. We discuss four different cases: abelian, nonabelian, relativistic, and nonrelativistic situations and extend the system to the whole phase space including ghost fields. In addition, we obtain the BRST charge of the field system and check its nilpotence of the BRST transformation which plays an important role such as in topological quantum field theory and string theory.  相似文献   

12.
The generator of electromagnetic gauge transformations in the Dirac equation has a unique geometric interpretation and a unique extension to the generators of the gauge group SU(2) × U(1) for the Weinberg-Salam theory of weak and electromagnetic interactions. It follows that internal symmetries of the weak interactions can be interpreted as space-time symmetries of spinor fields in the Dirac algebra. The possibilities for interpreting strong interaction symmetries in a similar way are highly restricted.  相似文献   

13.
We extend significantly previous works on the Hilbert space representations of the generalized uncertainty principle (GUP) in 3 + 1 dimensions of the form \([X_i,P_j] = i F_{ij}\) where \(F_{ij} = f({\mathbf {P}}^2) \delta _{ij} + g({\mathbf {P}}^2) P_i P_j\) for any functions f. However, we restrict our study to the case of commuting X’s. We focus in particular on the symmetries of the theory, and the minimal length that emerge in some cases. We first show that, at the algebraic level, there exists an unambiguous mapping between the GUP with a deformed quantum algebra and a quadratic Hamiltonian into a standard, Heisenberg algebra of operators and an aquadratic Hamiltonian, provided the boost sector of the symmetries is modified accordingly. The theory can also be mapped to a completely standard Quantum Mechanics with standard symmetries, but with momentum dependent position operators. Next, we investigate the Hilbert space representations of these algebraically equivalent models, and focus specifically on whether they exhibit a minimal length. We carry the functional analysis of the various operators involved, and show that the appearance of a minimal length critically depends on the relationship between the generators of translations and the physical momenta. In particular, because this relationship is preserved by the algebraic mapping presented in this paper, when a minimal length is present in the standard GUP, it is also present in the corresponding Aquadratic Hamiltonian formulation, despite the perfectly standard algebra of this model. In general, a minimal length requires bounded generators of translations, i.e. a specific kind of quantization of space, and this depends on the precise shape of the function f defined previously. This result provides an elegant and unambiguous classification of which universal quantum gravity corrections lead to the emergence of a minimal length.  相似文献   

14.
In a new approach to supergravity we consider the gauge theory of the 14-dimensional supersymmetry group. The theory is constructed from 14×4 gauge fields, 4 gauge fields being associated with each of the 14 generators of supersymmetry. The gauge fields corresponding to the 10 generators of the Poincaré subgroup are those normally associated with general relativity, and the gauge fields corresponding to the 4 generators of supersymmetry transformations are identified with a Rarita-Schwinger spinor. The transformation laws of the gauge fields and the Lagrangian of lowest degree are uniquely constructed from the supersymmetry algebra. The resulting action is shown to be invariant under these gauge transformations if the translation associated field strength vanishes. It is shown that the second-order form of the action, which is the same as that previously proposed, is invariant without constraint.  相似文献   

15.
In a theory of local field algebras satisfying the split property, we introduce an algebra generated by the local energy-momentum operators obtained from the canonical local implementation of translations, and possibly by the local charges operators. We discuss the relations of this algebra to the given algebra of local observables and take some steps toward the characterization of theories where they coincide. In the presence of spontaneously broken symmetries, we present a no-go theorem.  相似文献   

16.
We apply the superfield approach to the toy model of a rigid rotor and show the existence of the nilpotent and absolutely anticommuting Becchi–Rouet–Stora–Tyutin (BRST) and anti-BRST symmetry transformations, under which, the kinetic term and the action remain invariant. Furthermore, we also derive the off-shell nilpotent and absolutely anticommuting (anti-) co-BRST symmetry transformations, under which, the gauge-fixing term and the Lagrangian remain invariant. The anticommutator of the above nilpotent symmetry transformations leads to the derivation of a bosonic symmetry transformation, under which, the ghost terms and the action remain invariant. Together, the above transformations (and their corresponding generators) respect an algebra that turns out to be a physical realization of the algebra obeyed by the de Rham cohomological operators of differential geometry. Thus, our present model is a toy model for the Hodge theory.  相似文献   

17.
The derivation of the exact and unique nilpotent Becchi–Rouet–Stora–Tyutin (BRST) and anti-BRST symmetries for the matter fields, present in any arbitrary interacting gauge theory, has been a long-standing problem in the framework of the superfield approach to the BRST formalism. These nilpotent symmetry transformations are deduced for the four (3+1)-dimensional (4D) complex scalar fields, coupled to the U(1) gauge field, in the framework of an augmented superfield formalism. This interacting gauge theory (i.e. QED) is considered on a six (4,2)-dimensional supermanifold parametrized by four even spacetime coordinates and a couple of odd elements of the Grassmann algebra. In addition to the horizontality condition (that is responsible for the derivation of the exact nilpotent symmetries for the gauge field and the (anti-)ghost fields), a new restriction on the supermanifold, owing its origin to the (super) covariant derivatives, has been invoked for the derivation of the exact nilpotent symmetry transformations for the matter fields. The geometrical interpretations for all the above nilpotent symmetries are discussed, too. PACS 11.15.-q, 12.20.-m, 03.70.+k  相似文献   

18.
When extended supergravity theories with noncompact symmetry groups are written in a physical gauge, the noncompact symmetries join with the supersymmetries to generate an infinite-dimensional algebra. The details are worked out explicitly for a two-dimensional theory with an SU(1, 1) internal symmetry. Our analysis confirms the observation of Ellis et al. that the infinite rigid superalgebra should be obtained from the finite-dimensional local superalgebra by replacing scalar fields with their asymptotic values at infinity. The infinite algebra is described by extending the super-Poincaré generators to functions on the coset space defined by the scalar fields at infinity. While mathematically nontrivial, this result is, in a certain sense, trivial from a physical point of view.  相似文献   

19.
《Physics letters. [Part B]》1988,212(2):187-190
We present an action which generates the supersymmetric self-dual equations corresponding to euclidean super Yang-Mills theory in four dimensions. By adding additional constraint fields with new local symmetries, the classical equations of this system are the usual super self-dual equations when a gauge is chosen for the constraint fields. This construction is a supersymmetric generalization of the Labastida-Pernici action which corresponds to a gauge unfixed version of Witten's topological quantum field theory. We discuss some topological prospects for this model, and the role of supersymmetric instantons in Donaldson theory.  相似文献   

20.
We construct N=1 supersymmetric (SUSY) field theory in 4+2 dimensions compatible with the theoretical framework of two-time (2T) physics and its gauge symmetries. The fields are arranged into 4+2 dimensional chiral and vector supermultiplets, and their interactions are uniquely fixed by SUSY and 2T physics gauge symmetries. In a particular gauge the 4+2 theory reduces to ordinary supersymmetric field theory in 3+1 dimensions without any Kaluza-Klein remnants, but with some additional constraints in 3+1 dimensions of interesting phenomenological relevance. This construction is another significant step in the development of 2T physics as a structure that stands above 1T physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号