首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
A scheme is developed to study numerical solution of the space- and time-fractional Burgers equations under initial conditions by the homotopy analysis method. The fractional derivatives are considered in the Caputo sense. The solutions are given in the form of series with easily computable terms. Numerical solutions are calculated for the fractional Burgers equation to show the nature of solution as the fractional derivative parameter is changed.  相似文献   

2.
The fractional derivatives in the sense of Caputo and the homotopy analysis method are used to construct an approximate solution for the nonlinear space-time fractional derivatives Klein-Gordon equation. The numerical results show that the approaches are easy to implement and accurate when applied to the nonlinear space-time fractional derivatives KleinGordon equation. This method introduces a promising tool for solving many space-time fractional partial differential equations. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.  相似文献   

3.
The purpose of the paper is to present analytical and numerical solutions of a degenerate parabolic equation with time-fractional derivatives arising in the spatial difusion of biological populations.The homotopy–perturbation method is employed for solving this class of equations,and the time-fractional derivatives are described in the sense of Caputo.Comparisons are made with those derived by Adomian’s decomposition method,revealing that the homotopy perturbation method is more accurate and convenient than the Adomian’s decomposition method.Furthermore,the results reveal that the approximate solution continuously depends on the time-fractional derivative and the proposed method incorporating the Caputo derivatives is a powerful and efcient technique for solving the fractional diferential equations without requiring linearization or restrictive assumptions.The basis ideas presented in the paper can be further applied to solve other similar fractional partial diferential equations.  相似文献   

4.
The fractional Feynman–Kac equations describe the distributions of functionals of non-Brownian motion, or anomalous diffusion, including two types called the forward and backward fractional Feynman–Kac equations, where the nonlocal time–space coupled fractional substantial derivative is involved. This paper focuses on the more widely used backward version. Based on the newly proposed approximation operators for fractional substantial derivative, we establish compact finite difference schemes for the backward fractional Feynman–Kac equation. The proposed difference schemes have the q-th(q = 1, 2, 3, 4) order accuracy in temporal direction and fourth order accuracy in spatial direction, respectively. The numerical stability and convergence in the maximum norm are proved for the first order time discretization scheme by the discrete energy method, where an inner product in complex space is introduced. Finally, extensive numerical experiments are carried out to verify the availability and superiority of the algorithms. Also, simulations of the backward fractional Feynman–Kac equation with Dirac delta function as the initial condition are performed to further confirm the effectiveness of the proposed methods.  相似文献   

5.
The Lie symmetry theorem of fractional nonholonomic systems in terms of combined fractional derivatives is estab- lished, and the fractional Lagrange equations are obtained by virtue of the d'Alembert-Lagrange principle with fractional derivatives. As the Lie symmetry theorem is based on the invariance of differential equations under infinitesimal trans- formations, by introducing the differential operator of infinitesimal generators, the determining equations are obtained. Furthermore, the limit equations, the additional restriction equations, the structural equations, and the conserved quantity of Lie symmetry are acquired. An example is presented to illustrate the application of results.  相似文献   

6.
吴国成 《中国物理 B》2012,(12):118-122
<正>The variational iteration method is successfully extended to the case of solving fractional differential equations, and the Lagrange multiplier of the method is identified in a more accurate way.Some diffusion models with fractional derivatives are investigated analytically,and the results show the efficiency of the new Lagrange multiplier for fractional differential equations of arbitrary order.  相似文献   

7.
葛红霞  刘永庆  程荣军 《中国物理 B》2012,21(1):10206-010206
The present paper deals with the numerical solution of time-fractional partial differential equations using the element-free Galerkin (EFG) method, which is based on the moving least-square approximation. Compared with numerical methods based on meshes, the EFG method for time-fractional partial differential equations needs only scattered nodes instead of meshing the domain of the problem. It neither requires element connectivity nor suffers much degradation in accuracy when nodal arrangements are very irregular. In this method, the first-order time derivative is replaced by the Caputo fractional derivative of order α (0<α ≤1). The Galerkin weak form is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Several numerical examples are presented and the results we obtained are in good agreement with the exact solutions.  相似文献   

8.
刘金存  侯国林 《中国物理 B》2010,19(11):110305-110305
In this paper,the generalised two-dimensional differential transform method (DTM) of solving the time-fractional coupled KdV equations is proposed.The fractional derivative is described in the Caputo sense.The presented method is a numerical method based on the generalised Taylor series expansion which constructs an analytical solution in the form of a polynomial.An illustrative example shows that the generalised two-dimensional DTM is effective for the coupled equations.  相似文献   

9.
A numerical model for the unsteady flow under a pulsed magnetic field of a solenoid is developed, in which magnetohydrodynamic flow equations decouple into a transient magnetic diffusion equation and unsteady Navier–Stokes equations in conjunction with two equations of the k–ε turbulent model. A Fourier series method is used to implement the boundary condition of magnetic flux density under multiple periods of a pulsed magnetic field (PMF). The numerical results are compared with the theoretical or experimental results to validate the model under a time-harmonic magnetic field; it is found that the toroidal vortex pair is the dominating structure within the melt flow under a PMF. The velocity field of a molten melt is in a quasi-steady state after several periods; changing the direction of the electromagnetic force causes the vibration of the melt surface under a PMF.  相似文献   

10.
In this paper, the Lie group classification method is performed on the fractional partial differential equation(FPDE), all of the point symmetries of the FPDEs are obtained. Then, the symmetry reductions and exact solutions to the fractional equations are presented, the compatibility of the symmetry analysis for the fractional and integer-order cases is verified. Especially, we reduce the FPDEs to the fractional ordinary differential equations(FODEs) in terms of the Erd′elyi-Kober(E-K) fractional operator method, and extend the power series method for investigating exact solutions to the FPDEs.  相似文献   

11.
王羽  欧阳洁  杨斌鑫 《物理学报》2010,59(10):6757-6763
采用Laplace数值反演的Stehfest算法研究了分数阶Oldroyd-B粘弹性流体在两平板间非定常的Poiseuille流动问题.首先,通过数值解与近似解析解的比较验证了Stehfest算法的有效性.其次,运用Stehfest算法对平板Poiseuille流动进行了研究,揭示了分数阶黏弹性平板流的速度过冲和应力过冲现象,指出这些现象对分数导数的阶数存在明显的依赖性.同时,数值结果表明,整数阶本构方程仅仅是分数阶本构方程的特例,分数阶本构方程较整数阶本构方程具有更广泛的适用性。  相似文献   

12.
This article analysis differential equations which represents damped and fractional oscillators. First, it is shown that prior to using physical quantities in fractional calculus, it is imperative that they are turned dimensionless. Approximated expressions that relate the two equations parameters, when fractional order is close to an integer, are presented. Following, a numerical regression is made using power series expansion, and, also from fractional calculus, the fact that both equations cannot be equivalent is concluded. In the end, from the numerical regression data, the analytical approximated expressions that relate the two equations’ parameters are refined.  相似文献   

13.
Nowadays, fractional calculus are used to model various different phenomena in nature, but due to the non-local property of the fractional derivative, it still remains a lot of improvements in the present numerical approaches. In this paper, some new numerical approaches based on piecewise interpolation for fractional calculus, and some new improved approaches based on the Simpson method for the fractional differential equations are proposed. We use higher order piecewise interpolation polynomial to approximate the fractional integral and fractional derivatives, and use the Simpson method to design a higher order algorithm for the fractional differential equations. Error analyses and stability analyses are also given, and the numerical results show that these constructed numerical approaches are efficient.  相似文献   

14.
In this paper, we present fractional B-spline collocation method for the numerical solution of fractional differential equations. We consider this method for solving linear fractional differential equations which involve Caputo-type fractional derivatives. The numerical results demonstrate that the method is efficient and quite accurate and it requires relatively less computational work. For this reason one can conclude that this method has advantage on other methods and hence demonstrates the importance of this work.  相似文献   

15.
We propose an analytical justification for phase synchronization of fractional differential equations. This justification is based upon a linear stability criterion for fractional differential equations. We then investigate the existence of phase synchronization in chaotic forced Duffing and Sprott-L fractional differential systems of equations. Our numerical results agree with those analytical justifications.  相似文献   

16.
Fractional differential equations have attracted considerable interest because of their ability to model anomalous transport phenomena. Space fractional diffusion equations with a nonlinear reaction term have been presented and used to model many problems of practical interest. In this paper, a two-dimensional Riesz space fractional diffusion equation with a nonlinear reaction term (2D-RSFDE-NRT) is considered. A novel alternating direction implicit method for the 2D-RSFDE-NRT with homogeneous Dirichlet boundary conditions is proposed. The stability and convergence of the alternating direction implicit method are discussed. These numerical techniques are used for simulating a two-dimensional Riesz space fractional Fitzhugh-Nagumo model. Finally, a numerical example of a two-dimensional Riesz space fractional diffusion equation with an exact solution is given. The numerical results demonstrate the effectiveness of the methods. These methods and techniques can be extended in a straightforward method to three spatial dimensions, which will be the topic of our future research.  相似文献   

17.
In this paper, a class of fractional diffusion equations with variable coefficients is considered. An accurate and efficient spectral tau technique for solving the fractional diffusion equations numerically is proposed. This method is based upon Chebyshev tau approximation together with Chebyshev operational matrix of Caputo fractional differentiation. Such approach has the advantage of reducing the problem to the solution of a system of algebraic equations, which may then be solved by any standard numerical technique. We apply this general method to solve four specific examples. In each of the examples considered, the numerical results show that the proposed method is of high accuracy and is efficient for solving the time-dependent fractional diffusion equations.  相似文献   

18.
A new method that enables easy and convenient discretization of partial differential equations with derivatives of arbitrary real order (so-called fractional derivatives) and delays is presented and illustrated on numerical solution of various types of fractional diffusion equation. The suggested method is the development of Podlubny’s matrix approach [I. Podlubny, Matrix approach to discrete fractional calculus, Fractional Calculus and Applied Analysis 3 (4) (2000) 359–386]. Four examples of numerical solution of fractional diffusion equation with various combinations of time-/space-fractional derivatives (integer/integer, fractional/integer, integer/fractional, and fractional/fractional) with respect to time and to the spatial variable are provided in order to illustrate how simple and general is the suggested approach. The fifth example illustrates that the method can be equally simply used for fractional differential equations with delays. A set of MATLAB routines for the implementation of the method as well as sample code used to solve the examples have been developed.  相似文献   

19.
The main focus of this paper is to present a numerical method for the solution of fractional differential equations. In this method, the properties of the Caputo derivative are used to reduce the given fractional differential equation into a Volterra integral equation. The entire domain is divided into several small domains, and by collocating the integral equation at two adjacent points a system of two algebraic equations in two unknowns is obtained. The method is applied to solve linear and nonlinear fractional differential equations. Also the error analysis is presented. Some examples are given and the numerical simulations are also provided to illustrate the effectiveness of the new method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号