首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A nonlinear time-dependent model of the development of longwave perturbations in a hypersonic boundary layer flow in the neighborhood of a cooled surface is constructed. The pressure in the flow is assumed to be induced the combined variation of the thicknesses of the near-wall and main parts of the boundary layer. Numerical and analytic solutions are obtained in the linear approximation. It is shown that if the main part of the boundary layer is subsonic as a whole, its action reduces the perturbation damping upstream and the perturbation growth downstream, while a supersonic, as a whole, main part of the boundary layer creates the opposite effects. An analysis of the solutions obtained makes it possible to conclude that the asymptotic model proposed can describe the three-dimensional instability of the Tollmien-Schlichting waves.  相似文献   

2.
The boundary layer on a plate with an inclined blunt leading edge is investigated for a free-stream flow with a small span-periodic velocity inhomogeneity. This flow simulates the penetration of the outer turbulence into the swept wing boundary layer. It is shown that the boundary layer perturbations generated by the inhomogeneity generally have a streamwise velocity component significantly greater than the initial inhomogeneity amplitude. The dependence of the perturbations on the distance from the leading edge and the spanwise inhomogeneity period is found. It is shown that the swept wing boundary layer is less sensitive to the perturbation type in question than the straight wing boundary layer.  相似文献   

3.
The small perturbation spectrum of a number of flows has recently been analyzed carefully [1–3]. At the same time, investigations for the boundary layer have been limited within the framework of linear perturbation theory to the neighborhood of the neutral curve although a spectrum analysis is of indubitable interest not only to find the stability criterion of a laminar stream, but also to solve a problem with initial data about the time development of an arbitrary small perturbation. In particular, the possibility of representing an arbitrary perturbation in terms of a system of basis functions is related to the question of the completeness of the system. The finiteness was proved [4] and an estimate was obtained of the domain of eigenvalue existence in an investigation of the boundary-layer stability and a deduction has been made about the finiteness of the small perturbations spectrum for boundary-layer flow on this basis. A sufficiently complete survey of the investigation of the neutral stability of a laminar boundary layer can be found in the monograph [5]. The small perturbations spectrum in a boundary layer flow is obtained in this paper by methods of the linear theory of hydrodynamic stability by using the complete boundary conditions on the outer boundary. It is shown that the small perturbations spectrum is finite for each fixed value of the wave number . Singularities in the spectrum behavior are investigated for sufficiently small .Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 112–115, July–August, 1975.The author is grateful to M. A. Gol'dshtik and V. N. Shtern for useful discussions of the results of the research.  相似文献   

4.
5.
A model of the nonlinear interaction between a pressure perturbation traveling at a constant velocity and an incompressible boundary layer is constructed when its near-wall part is described by the “inviscid boundary layer” equations. A steady-state solution is managed to obtain in the finite form under the assumption that it exists in a moving coordinate system. It is shown that the boundary layer can easily overcome pressure perturbations whose amplitude is not higher than the dynamic pressure calculated from the velocity of the pressure perturbation. At the higher pressure perturbation amplitudes a vortex sheet sheds from the body surface to the boundary layer. The vortex sheet represents an unstable surface of the tangential discontinuity which separates the regions of the direct and reverse separation flows. In the case of an arbitrary shape of the pressure perturbation the surface of the tangential discontinuity sheds from the body surface at a finite angle with the formation of a stagnation point. An example of the pressure perturbation in which the vortex sheet sheds from the body surface along the tangent is constructed.  相似文献   

6.
It is known from experimental investigations that the leading-edge boundary layer of a swept wing exhibits transition to turbulence at subcritical Reynolds numbers, i.e. at Reynolds numbers which lie below the critical Reynolds number predicted by linear stability theory. In the present work, we investigate this subcritical transition process by direct numerical simulations of a swept Hiemenz flow in a spatial setting. The laminar base flow is perturbed upstream by a pair of stationary counter-rotating vortex-like disturbances. This perturbation generates high- and low-speed streaks by a non-modal growth mechanism. Further downstream, these streaky structures exhibit a strong instability to secondary perturbations which leads to a breakdown to turbulence.The observed transition mechanism has strong similarities to by-pass transition mechanisms found for two-dimensional boundary layers. It can be shown that transition strongly depends on the amplitude of the primary perturbation as well as on the frequency of the secondary perturbation.  相似文献   

7.
8.
The propagation of perturbations in the three-dimensional boundary layer on a planar delta wing in a hypersonic gas stream is investigated in the strong viscid-inviscid interaction regime. A characteristic associated with the induced pressure is found and an integral relation determining the velocity of its propagation is obtained. The directional diagrams of the propagation velocity of the characteristic surface in the boundary layer are determined for a series of constitutive parameters. This makes it possible to calculate the perturbation propagation velocities in the boundary layer when the velocity profiles in the longitudinal and transverse directions are known.  相似文献   

9.
The linear problem is considered of a localized vibrator mounted on a flat plate in a subsonic boundary layer. The plate and the vibrator are assumed to be heat-insulated, and the dimensions of the vibrator and the frequency of the oscillations are such that the flow may be described by means of the equations of a boundary layer with self-induced pressure. The amplitude of the oscillations of the vibrator and the perturbations of the flow parameters corresponding to it are assumed to be small, and this makes it possible to linearize these equations. Integral transformations are used to construct a solution for values of the time greatly exceeding the period of the oscillations of the vibrator. The profiles of the perturbations of the longitudinal velocity are calculated in dependence on the transverse coordinate for various values of the longitudinal coordinate. A comparison is made with the profiles of the perturbations of the longitudinal velocity which have been obtained experimentally.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 61–67, May–June, 1987.  相似文献   

10.
Asymptotic equations describing the unsteady free interaction of a three-dimensional boundary layer with an exterior flow are derived. The orders of the independent variables and perturbations of the flow parameters are chosen in such a way that the pressure gradient that occurs in the equation of the wall layer is due to the displacement of streamlines situated near the surface of the body. The Fourier method is used to construct a solution to the linearized problem. A class of perturbations satisfying homogeneous boundary conditions on the surface of the body is found.  相似文献   

11.
This paper presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier–Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi’s iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of 2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.  相似文献   

12.
Reducing frction drag and delaying the laminar-turbulent transition are topical problems of modern aerodynamics. A series of methods of delaying transition are known: creation of a favorable pressure gradient, boundary layer suction, surface cooling, etc., [1, 2]. Here, the possibility of delaying transition by means of volume heat supply to the boundary layer is considered. For this purpose, a subsonic compressible laminar boundary layer with volume energy supply is subjected to a stability analysis. The nonself-similar flow in the boundary layer is determined by means of a finite-difference marching method. The flow stability characteristics are calculated on the basis of the linear theory in the plane-parallel approximation. It is shown that even on a thermally insulated surface volume energy supply to the flow leads to significant flow stabilization and reduced perturbation growth rates.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 62–67, March–April, 1988.  相似文献   

13.
A study is made of a laminar boundary layer near a cold plate in the regime of weak viscous -inviscid interaction in the limit in which the free-stream Mach number tends to infinity and the temperature factor to zero. Local disturbed flow regions formed due to the presence of small elements of roughness on the surface of the plate are investigated. It is found that thick regions of roughness elements induce disturbances of the frictional stresses and the heat flux of the same order as these quantities in the undisturbed boundary layer, while all thin regions of roughness elements induce only small, linear perturbations and, therefore, cannot cause separation of the boundary layer; the different regimes of flow past the roughness elements are described.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 19–27, January–February, 1991.  相似文献   

14.
In a vertically oscillating circular cylindrical container, singular perturbation theory of two-time scale expansions is developed in weakly viscous fluids to investigate the motion of single free surface standing wave by linearizing the Navier-Stokes equation. The fluid field is divided into an outer potential flow region and an inner boundary layer region. The solutions of both two regions are obtained and a linear amplitude equation incorporating damping term and external excitation is derived. The condition to appear stable surface wave is obtained and the critical curve is determined. In addition, an analytical expression of damping coefficient is determined. Finally, the dispersion relation, which has been derived from the inviscid fluid approximation, is modified by adding linear damping. It is found that the modified results are reasonably closer to experimental results than former theory. Result shows that when forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when forcing frequency is high, the surface tension of the fluid is prominent.  相似文献   

15.
The flow stability in a boundary layer with an inhomogeneous spanwise-periodic velocity profile modeling the streaky structure that develops at a high level of turbulence of the incident flow is analyzed in the three-dimensional formulation for perturbations with an arbitrary transverse period. It is shown that in the presence of inhomogeneity the dispersion relation for the Tollmien-Schlichting waves is split into two branches periodic in the transverse wave number, which correspond to symmetric and antisymmetric modes. The solution for the packet of inhomogeneous-flow modes generated by localized time-periodic fluid injection/ejection is found. The shape of this packet corresponds qualitatively to the shape of the Tollmien-Schlichting wave packet, but the fine perturbation structure inside it is sharply different.  相似文献   

16.
The response of the boundary layer on a plate with a blunt leading edge to frozen-in vortex perturbations whose vorticity is normal to the plate surface is found. It is shown that these vortices generate an inhomogeneity of the streamwise velocity component in the boundary layer. This inhomogeneity is analogous to the streaky structure developing as the degree of free-stream turbulence increases. The dependence of the amplitude and shape of the boundary layer inhomogeneity on the distance from the leading edge, the streamwise and spanwise scales, and other parameters is found for periodic and local initial perturbations. It is shown that the receptivity of the boundary layer decreases with increase in the frequency and with decrease in the streamwise perturbation scale.  相似文献   

17.
The linear stability of the boundary layer developing on a flat plate in the presence of finite-amplitude, steady and spanwise periodic streamwise streaks is investigated. The streak amplitudes considered here are below the threshold for onset of the inviscid inflectional instability of sinuous perturbations. It is found that, as the amplitude of the streaks is increased, the most unstable viscous waves evolve from two-dimensional Tollmien–Schlichting waves into three-dimensional varicose fundamental modes which compare well with early experimental findings. The analysis of the growth rates of these modes confirms the stabilising effect of the streaks on the viscous instability and that this stabilising effect increases with the streak amplitude. Varicose subharmonic modes are also found to be unstable but they have growth rates which typically are an order of magnitude lower than those of fundamental modes. The perturbation kinetic energy production associated with the spanwise shear of the streaky flow is found to play an essential role in the observed stabilisation. The possible relevance of the streak stabilising role for applications in boundary layer transition delay is discussed.  相似文献   

18.
19.
IntroductionRecently,intheanalysisofboundarylayertransitionfromlaminartoturbulent,theinteractionoftwo_dimensionalandthre_dime...  相似文献   

20.
The receptivity of the boundary layer in the neighborhood of the attachment line of a cylinder inclined to the flow with respect to periodic vortex perturbations frozen into the stream is investigated. The problem considered simulates the interaction between external turbulence and the leading-edge swept wing boundary layer. It is shown that if the direction of the external perturbation vector is almost parallel to the leading edge, then the external perturbations are considerably strengthened at the outer boundary layer edge. This effect can cause laminar-turbulent transition on the attachment line at subcritical Reynolds numbers.Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, 2004, pp. 72–85. Original Russian Text Copyright © 2004 by Ustinov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号