首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A voltammetric sensor for the determination of parathion has been developed based on the use of a poly(carmine) film electrode. The reduction of parathion at the poly(carmine) modified glassy carbon electrode (GCE) is studied by cyclic voltammetry (CV) and linear scan voltammetry (LSV). Parathion yields a well-defined reduction peak at a potential of −0.595 V on the poly(carmine) modified GCE in pH 6.0 phosphate buffer solution (PBS). Compared with that on a bare GCE, the reduction peak current of parathion is significantly enhanced. All the experimental parameters are optimized for the determination of parathion. The reduction peak current is linear with the parathion concentration in the range of 5.0 × 10−8 to 1.0 × 10−5 mol L−1, and the detection limit is 1.0 × 10−8 mol L−1.  相似文献   

2.
Simple and sensitive electrochemical method for the determination of nitrite, based on a nano-alumina-modified glassy carbon electrode (GCE), is described. Nitrite yields a well-defined oxidation peak whose potential is 0.74 V at the nano-alumina-coated GCE in 0.1 mol L−1 phosphate buffer (pH 5.0). Compared with bare GCE, the nano-alumina-modified GCE has evident catalytic effect towards the oxidation of nitrite, and its peak current can be significantly enhanced. Some of the experimental parameters were optimized for the determination of nitrite. The oxidation peak current was proportional to nitrite concentration in the range of 5.0 × 10−8–1.1 × 10−3 mol L−1, and a detection limit of 1.0 × 10−8 mol L−1 was obtained. This method has been successfully used to the determination of nitrite in sausage sample. Furthermore, results obtained by the method have been compared with spectrophotometric method.  相似文献   

3.
A sensitive molecularly imprinted electrochemical sensor was developed for selective detection of streptomycin by combination of mercaptoacetic acid-modified PbS nanoparticles with Au-coated Fe3O4 magnetic nanoparticles dispersed multi-walled carbon nanotubes doped chitosan film. The imprinted sensor was fabricated onto the Au electrode via stepwise modification of nanocomposites and an electrodeposited thin film of molecularly imprinted polymers via sol–gel technology. The morphologies and electrochemical behaviors of the imprinted sensor were characterized by scanning electron microscope, cyclic voltammetry, and differential pulse voltammetry, respectively. The prepared sensor showed very high recognition ability and selectivity for streptomycin. Under optimal conditions, the imprinted sensor displayed good electrocatalytic activity to the redox of streptomycin. And the differential voltammetric anodic peak current was linear to the logarithm of streptomycin concentration in the range from 1.0 × 10−6 to 1.0 × 10−3 mol L−1, and the detection limit obtained was 1.5 × 10−9 mol L−1. This proposed imprinted sensor was used successfully for streptomycin determination in different injection solution samples.  相似文献   

4.
Guanosine-5′-monophosphate (GMP) was investigated the electrochemical behaviors based on solid-phase extractionon (SPE) at Cu-Mg-Al hydrotalcite-like compound (HTLC) modified glass carbon electrode. Cu-Mg-Al hydrotalcite-like compound (HTLC) was proved as a new sorbent for SPE of GMP, which showed an irreversible adsorption oxidation process on the HTLC/GCE with the oxidation peak potential located at 1.15 V (vs. SCE) in a pH 5.0 acetate buffer solution. Influencing factors of the electrochemical behavior of GMP on the HLTC/GCE were optimized and kinetic parameters were calculated. Under the optimal conditions, with differential pulse voltammetry (DPV), a linear relationship was obtained between the oxidation peak current and the GMP concentration in the range from 1.0 × 10− 6 to 8.0 × 10−4 mol L−1 with the detection limit as 5.0 × 10−7 mol L−1 (signal-to-noise ratio of 3). The modified electrode surface has very good reproducibility and stability.  相似文献   

5.
A simple and highly selective electrochemical method has been developed for the simultaneous determination of hydroquinone (HQ) and catechol (CC) at a glassy carbon electrode covalently modified with penicillamine (Pen). The electrode is used for the simultaneous electrochemical determination of HQ and CC and shows an excellent electrocatalytical effect on the oxidation of HQ and CC upon cyclic voltammetry in acetate buffer solution of pH 5.0. In differential pulse voltammetric measurements, the modified electrode was able to separate the oxidation peak potentials of HQ and CC present in binary mixtures by about 103 mV although the bare electrode gave a single broad response. The determination limit of HQ in the presence of 0.1 mmol L−1 CC was 1.0 × 10−6 mol L−1, and the determination limit of CC in the presence of 0.1 mmol L−1 HQ was 6.0 × 10−7 mol L−1. The method was applied to the simultaneous determination of HQ and CC in a water sample. It is simple and highly selective.  相似文献   

6.
A simple sensor based on bare carbon ionic liquid electrode was fabricated for simultaneous determination of dihydroxybenzene isomers in 0.1 mol L−1 phosphate buffer solution (pH 6.0). The oxidation peak potential of hydroquinone was about 0.136 V, catechol was about 0.240 V, and resorcinol 0.632 V by differential pulse voltammetric measurements, which indicated that the dihydroxybenzene isomers could be separated absolutely. The sensor showed wide linear behaviors in the range of 5.0 × 10−7–2.0 × 10−4 mol L−1 for hydroquinone and catechol, 3.5 × 10−6–1.535 × 10−4 mol L−1 for resorcinol, respectively. And the detection limits of the three dihydroxybenzene isomers were 5.0 × 10−8, 2.0 × 10−7, 5.0 × 10−7 mol L−1, respectively (S/N = 3). The proposed method could be applied to the determination of dihydroxybenzene isomers in artificial wastewater and the recovery was from 93.9% to 104.6%.  相似文献   

7.
In the present work, a new voltammetric sensor, Langmuir–Blodgett (LB) film of tetraoxocalix[2]arene[2]triazine (TOCT) modified glassy carbon electrode (LBTOCT-GCE), for trace analysis of copper ion in water samples, was prepared. The morphology of LBTOCT-GCE was characterized by cyclic voltammetric method, electrochemical impedance spectroscopy, and atomic force microscope. The recognizing mechanism of LBTOCT-GCE for copper ion in aqueous solution was discussed. Under the optimum experimental conditions, using square wave stripping voltammetry and accumulation time of 300 s, the peak currents were linear relationship with Cu2+ concentrations in the range of 2 × 10−9 to 1 × 10−6 mol L−1, with detection limit of 1 × 10−10 mol L−1. By this method, real samples (lake water, drinking water, and city wastewater) were analyzed with satisfactory results. In addition, the fabricated electrode exhibited a distinct advantage of simple preparation, non-toxicity, good reproducibility, and stability.  相似文献   

8.
The electrochemical behavior of epinephrine (EP) at a mercaptoacetic acid (MAA) self-assembled monolayer modified gold electrode was studied. The MAA/Au electrode is demonstrated to promote the electrochemical response of epinephrine by cyclic voltammetry. The possible reaction mechanism is also discussed. The diffusion coefficient D of EP is 6.85 × 10−6 cm2 s−1. In 0.1 mol L−1 phosphate buffer (pH 7.20), a sensitive oxidation peak was observed at 0.177 V, and the peak current is proportional to the concentration of EP in the range of 1.0 × 10−5–2.0 × 10−4 mol L−1 and 1.0 × 10−7–1.0 × 10−6 mol L−1. The detection limit is 5 × 10−8 mol L−1. The modified electrode is highly stable and can be applied to the determination of EP in practical injection samples. The method is simple, quick, sensitive and accurate.  相似文献   

9.
Single-wall carbon nanotubes (SWNT) were dispersed into water in the presence of dicetyl phosphate (DCP), and then a SWNT-DCP film-coated glassy carbon electrode (GCE) was constructed. The electrochemical behavior of acetaminophen at bare GCE and SWNT-DCP modified GCE were compared, suggesting that the SWNT-DCP-modified GCE significantly enhances the oxidation peak current of acetaminophen. A sensitive and simple electrochemical method with a good linear relationship in the range of 1.0 × 10−7–2.0 × 10−5 mol L−1, was developed for the determination of acetaminophen. The detection limit is 4.0 × 10−8 mol L−1 for 3-min accumulation. This method was successfully demonstrated with tablets.  相似文献   

10.
Chunya Li 《Mikrochimica acta》2007,157(1-2):21-26
Multi-wall carbon nanotubes (MWNT) were dispersed into water in the presence of dicetyl phosphate (DCP), and MWNT-DCP composite film coated glassy carbon electrodes (GCE) were constructed. The electrochemical properties of 2-chlorophenol at a bare GCE and MWNT-DCP modified GCE were compared. It was found that MWNT-DCP modified GCEs significantly enhance the oxidation peak current of 2-chlorophenol and lowers its oxidation overpotential, suggesting great potential in the sensitive determination of 2-chlorophenol. Finally, a sensitive and simple voltammetric method was developed for the determination of 2-chlorophenol. The oxidation peak current increases linearly with the concentration in the range of 1.0 × 10−7–2.0 × 10−5 mol L−1, and the detection limit is 4.0 × 10−8 mol L−1 for 2 min accumulation. The method was successfully used to determine 2-chlorophenol in waste water samples.  相似文献   

11.
Electrochemical DNA biosensor was successfully developed by depositing the ionic liquid (e.g., 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM][Otf])), ZnO nanoparticles, and chitosan (CHIT) nanocomposite membrane on a modified gold electrode (AuE). The electrochemical properties of the [EMIM][Otf]/ZnO/CHIT/AuE for detection of DNA hybridization were studied. Under optimal conditions using cyclic voltammetry, the target DNA sequences could be detected in the concentration range of 1.0 × 10−18 to 1.82 × 10−4 mol L−1, and with the detection limit of 1.0 × 10−19 mol L−1. This DNA biosensor detection approaches provide a quick, sensitive, and convenient method to be used in the identification of Trichoderma harzianum.  相似文献   

12.
The electrooxidative behaviour and determination of quetiapine (QTP), a dibenzothiazepine derivative and antipsychotic agent, on a glassy carbon disc electrode was investigated using cyclic (CV), linear sweep (LSV), differential pulse (DPV) and Osteryoung square wave voltammetry (OSWV). Fully validated DP and SW voltammetric procedures are described for the determination of QTP. QTP in pH 3.5 acetate buffer solution presents a well-defined anodic response, studied by the proposed methods. This main response was due to the irreversible, diffusion-controlled, one-electron and one-proton oxidation of the aliphatic nitrogen of the piperazine ring. Under optimal conditions, a detection limit of 4.0 × 10−8 mol L−1 for DPV and 1.33 × 10−7 mol L−1 for OSWV, and a linear calibration graph in the range from 4.0 × 10−6 to 2.0 × 10−4 mol L−1 were obtained for both methods. The procedure was successfully applied to the determination of the drug in tablets, human serum and human urine with good recoveries. The detection limits were 6.20 × 10−7 mol L−1 and 5.92 × 10−7 mol L−1 in human serum and 1.44 × 10−7 mol L−1 and 1.31 × 10−6 mol L−1 in human urine, for the DPV and OSWV method, respectively.  相似文献   

13.
We report a sensitive and convenient voltammetric method for the direct determination of 10-hydroxycamptothecin (HCPT). At a multi-wall carbon nanotube (MWNT)-modified electrode, HCPT yields a very sensitive and well-shaped oxidation peak, which can be used as analytical signal for HCPT determination. Compared with the poor electrochemical signal at the unmodified GCE, the electrochemical response of HCPT at the MWNT-modified GCE was greatly improved, as confirmed by the significant peak current enhancement. This result indicates that the MWNT-modified GCE has great potential in the sensitive determination of HCPT. Based on this, a very sensitive and simple electrochemical method was proposed for HCPT determination after all the experimental parameters were optimized. The newly-proposed method possesses very low detection limit (2 × 10−9 mol L−1) and wider linear range (from 1 × 10−8 to 4 × 10−6 mol L−1). Rapid and simple sample analysis is another advantage. Finally, this method was successfully demonstrated using HCPT drugs.  相似文献   

14.
A self-assembled electrode with a meso-2,3-dimercaptosuccinic acid (DMSA) monolayer has been characterized by electrochemical quartz crystal microbalance and complex impedance analysis, surface enhanced Raman spectroscopy and cyclic voltammetry. The self-assembled electrode was used for the simultaneous electrochemical detection of epinephrine (EP) and uric acid (UA) in phosphate buffer of pH 7.7. The simultaneous oxidation of EP and UA was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV), and the signals for each method were well separated with a potential difference of over 330 mV and without interference by each other. The detection limit of EP is 5.4 × 10−8 mol L−1 by CV and 5.3 × 10−8 mol L−1 by DPV and that of UA is 8.4 × 10−8 mol L−1 by CV and 4.2 × 10−8 mol L−1 by DPV. The DMSA self-assembled electrode can be applied to the simultaneous determination of EP and UA.  相似文献   

15.
The fabrication and electrochemical characteristics of a penicillamine (PCA) self-assembled monolayer modified gold electrode were investigated. The electrode can enhance the electrochemical response of uric acid (UA), and the electrochemical reaction of UA on the PCA electrode has been studied by cyclic voltammetry and differential pulse voltammetry. Some electrochemical parameters, such as diffusion coefficient, standard rate constant, electron transfer coefficient and proton transfer number have been determined for the electrochemical behavior on the PCA self-assembled monolayer electrode. The electrode reaction of UA is an irreversible process, which is controlled by the diffusion of UA with two electrons and two protons transfer at the PCA/Au electrode. In phosphate buffer (pH 5.0), the peak current is proportional to the concentration of UA in the range of 6.0 × 10−5–7.0 × 10−4 mol L−1 and 2.0 × 10−5–7.0 × 10−4 mol L−1 for the cyclic voltammetry and differential pulse voltammetry methods with the detection limits of 5.0 × 10−6 and 3.0 × 10−6 mol L−1, respectively. The method can be applied to determine UA concentration in real samples.  相似文献   

16.
A novel L-cysteine film modified electrode has been fabricated by means of an electrochemical oxidation procedure, and it was successfully applied to the electrochemical determination of acetaminophen. This method utilizes the electrooxidation of amines to their analogous cation radicals to form a chemically stable covalent linkage between the nitrogen atom of the amine and edge plane sites at the glassy carbon electrode surface. The electrochemical behaviour of acetaminophen at the film electrode was investigated in 0.1 mol L−1 phosphate buffer (pH 6.20). It was found that the redox peak current of acetaminophen was enhanced greatly on the film electrode. Linearity between the oxidation peak current and the acetaminophen concentration was obtained in the range of 1.0 × 10−4–2.0 × 10−7 mol L−1 with a detection limit of 5.0 × 10−8 mol L−1. For seven parallel detections of 1.0 × 10−5 mol L−1 acetaminophen, the relative standard deviation (RSD) was 1.46%, suggesting that the film electrode has excellent reproducibility. Application to the determination of acetaminophen in drug tablets and human urine demonstrated that the film electrode has good stability and high sensitivity.  相似文献   

17.
The voltammetric determination of 2-mercaptobenzimidazole (MBI) was studied by using a glassy carbon electrode (GCE) coated with polymeric nickel and copper tetraaminophthalocyanine (poly-NiTAPc and poly-CuTAPc) membrane. The polymeric membrane decreases the overpotential of oxidation of MBI by 136.2 and 115.0 mV and increases the oxidation peak current by about 3.4 and 3.3 times, while the reduction peak potential shifts positively by 113.0 and 84.1 mV and the peak current increases by about 10 and 7 times in 0.1 mol·l−1 phosphate buffer solution (PBS) at pH = 2.0 for poly-NiTAPc and poly-CuTAPc, respectively, compared to the unmodified GCE. The results indicated that the developed electrode exhibited efficient electrocatalytic activity for MBI with relatively high sensitivity, stability, and long life. The oxidation and reduction peak currents of MBI were linear to its concentrations ranging from 8.0 × 10−5 to 1.0 × 10−3 mol·l−1 at poly-NiTAPc and from 2.0 × 10−5 to 1.0 × 10−3 mol·l−1 at poly-NiTAPc membranes modified electrodes, respectively, with a low limit of detection.  相似文献   

18.
The electrode characteristics and selectivities of PVC-based thiocyanate selective polymeric membrane electrode (PME) incorporating the newly synthesized zinc complex of 6,7:14,15-Bzo2-10,11-(4-methylbenzene)-[15]-6,8,12,14-tetraene-9,12-N2-1,5-O2 (I 1 ) and zinc complex of 6,7:14,15-Bzo2-10,11-(4-methylbenzene)-[15]-6,14-diene-9,12-dimethylacrylate-9,12-N2-1,5-O2 (I 2 ) are reported here. The best response was observed with the membrane having a composition of I2:PVC:o-NPOE:HTAB in the ratio of 6:33:59:2 (w/w; milligram). This electrode exhibited Nernstian slope for thiocyanate ions over working concentration range of 4.4 × 10−7 to 1.0 × 10−2 mol L−1 with detection limit of 2.2 × 10−7 mol L−1. The performance of this electrode was compared with coated graphite electrode (CGE), which showed better response characteristics w.r.t Nernstian slope 59.0 ± 0.2 mV decade−1 activity, wide concentration range of 8.9 × 10−8 to 1.0 × 10−2 mol L−1 and detection limit of 6.7 × 10−8 mol L−1. The response time for CGE and PME was found to be 8 and 10 s, respectively. The proposed electrode (CGE) was successfully applied to direct determination of thiocyanate in biological and environmental samples and also as indicator electrode in potentiometric titration of SCN ion.  相似文献   

19.
Carboxyl group-functionalized single-walled carbon nanotubes (SWNTs) and 2,6-pyridinedicarboxylic acid (PDC) were electropolymerized by cyclic voltammetry on a glassy-carbon electrode (GCE) surface to form composite films (SWNTs/PDC). Zirconia was then electrodeposited on the SWNTs/PDC/GCE from an aqueous electrolyte containing ZrOCl2 and KCl by cycling the potential between −1.1 V and +0.7 V at a scan rate of 20 mV s−1. DNA probes with a phosphate group at the 5′ end were easily immobilized on the zirconia thin films, because of the strong affinity between zirconia and phosphate groups. The sensors were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). EIS was used for label-free detection of the target DNA by measuring the increase of the electron transfer resistance (R et) of the electrode surface after the hybridization of the probe DNA with the target DNA. The PAT gene fragment and polymerase chain reaction (PCR) amplification of the NOS gene from transgenically modified beans were satisfactorily detected by use of this DNA electrochemical sensor. The dynamic range of detection of the sensor for the PAT gene fragment was from 1.0 × 10−11 to 1.0 × 10−6 mol L−1 and the detection limit was 1.38 × 10−12 mol L−1.  相似文献   

20.
Poly(phenol red) (denoted as PPR) films were electrochemically synthesized on the surface of a glassy carbon electrode (GCE) by cyclic voltammetry to obtain a chemically modified electrode (denoted as PPR-GCE). The growth mechanism of PPR films was studied by attenuated total reflection spectroscopy. This PPR-GCE was used to develop a novel and reliable method for the determination of trace Pb2+ by anodic stripping differential pulse voltammetry. At optimum conditions, the anodic peak exhibits a good linear concentration dependence in the range from 5.0 × 10−9 to 5.0 × 10−7 mol L−1 (r = 0.9989). The detection limit is 2.0 × 10−9 mol L−1 (S/N = 3). The method was employed to determine trace levels of Pb2+ in industrial waste water samples. Correspondence: Gongjun Yang, Ming Shen, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号