首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Ultrasonics sonochemistry》2014,21(5):1893-1899
Megasonic cleaning is traditionally used for removal of particles from wafer surfaces in semiconductor industry. With the advancement of technology node, the major challenge associated with megasonic cleaning is to be able to achieve high cleaning efficiency without causing damage to fragile features. In this paper, a method based on electrochemistry has been developed that allows controlled formation and growth of a hydrogen bubbles close to a solid surface immersed in an aqueous solution irradiated with ∼1 MHz sound field. It has been shown that significant microstreaming from resonating size bubble can be induced by proper choice of transducer duty cycle. This method has the potential to significantly improve the performance of megasonic cleaning technology through generation of local microstreaming, interfacial and pressure gradient forces in close vicinity of conductive surfaces on wafers without affecting the transient cavitation responsible for feature damage.  相似文献   

3.
4.
The great progress in high-peak-power laser technology has resulted recently in the production of ps and subps laser pulses of PW powers and relativistic intensities (up to 1021 W/cm2) and has laid the basis for the construction of multi-PW lasers generating ultrarelativistic laser intensities (above 1023 W/cm2). The laser pulses of such extreme parameters make it possible to produce highly collimated beams of electrons or ions of MeV to GeV energies, of short time durations (down to subps) and of enormous currents and current densities, unattainable with conventional accelerators. Such particle beams have a potential to be applied in numerous fields of scientific research as well as in medicine and technology development. This paper is focused on laser-driven generation of fast ion beams and reviews recent progress in this field. The basic concepts and achievements in the generation of intense beams of protons, light ions, and multiply charged heavy ions are presented. Prospects for applications of laser-driven ion beams are briefly discussed.  相似文献   

5.
A new approach is proposed for explaining the experimental data on sonoluminescence of acoustic and laser-induced cavitation bubbles. It is suggested that two different sonoluminescence mechanisms, namely, thermal and electric ones, are possible and that they manifest themselves depending on the bubble dynamics. An intense thermal luminescence occurs as a result of compression of an individual stationary spherical bubble; a weak electric luminescence accompanies the deformation and splitting of the bubble when thermal luminescence is suppressed (for example, in the case of multibubble sonoluminescence). It is shown that, when an individual bubble loses its spherical shape under the effect of different actions (change in the acoustic pressure, artificial deformation, translatory motion, etc.) or when a laser-induced bubble undergoes fragmentation, the sonoluminescence spectrum exhibits specific bands that are similar to the bands in the multibubble sonoluminescence spectrum. The appearance of these bands is attributed to the suppression of the thermal sonoluminescence mechanism and the manifestation of the electric mechanism. It is shown that the maximum temperature T max characterizing the compression of a laser-induced bubble is primarily determined by the temperature of the plasma at the instant of the laser-induced breakdown, whereas, for an acoustic bubble, T max is primarily determined by the acoustic and hydrostatic pressures and by the saturation vapor pressure of the liquid.  相似文献   

6.
Dual- or multiple-frequency ultrasound stimulation is capable of effectively enhancing the acoustic cavitation effect over single-frequency ultrasound. Potential application of this sonoreactor design has been widely proposed such as on sonoluminescence, sonochemistry enhancement, and transdermal drug release enhancement. All currently available sonoreactor designs employed multiple piezoelectric transducers for generating single-frequency ultrasonic waves separately and then these waves were mixed and interfered in solutions. The purpose of this research is to propose a novel design of generating dual-frequency ultrasonic waves with single piezoelectric elements, thereby enhancing acoustic cavitation. Macroscopic bubbles were detected optically, and they were quantified at either a single-frequency or for different frequency combinations for determining their efficiency for enhancing acoustic cavitation. Visible bubbles were optically detected and hydrogen peroxide was measured to quantify acoustic cavitation. Test water samples with different gas concentrations and different power levels were used to determine the efficacy of enhancing acoustic cavitation of this design. The spectrum obtained from the backscattered signals was also recorded and examined to confirm the occurrence of stable cavitation. The results confirmed that single-element dual-frequency ultrasound stimulation can enhance acoustic cavitation. Under certain testing conditions, the generation of bubbles can be enhanced up to a level of five times higher than the generation of bubbles in single-frequency stimulation, and can increase the hydrogen peroxide production up to an increase of one fold. This design may serve as a useful alternative for future sonoreactor design owing to its simplicity to produce dual- or multiple-frequency ultrasound.  相似文献   

7.
During acoustic cavitation process, bubbles appear when acoustic pressure reaches a threshold value in the liquid. The ultrasonic field is then submitted to the action of the bubbles. In this paper we develop a model to analyze the cavitation phenomenon in one-dimensional standing waves, based on the nonlinear code SNOW-BL. Bubbles are produced where the minimum rarefaction pressure peak exceeds the cavitation threshold. We show that cavitation bubbles appear at high amplitude and drastically affect (dissipation, dispersion, and nonlinearity) the ultrasonic field. This paper constitutes the first work that associates the nonlinear ultrasonic field to a bubble generation process.  相似文献   

8.
We present a stream cipher based on a chaotic dynamical system. Using a chaotic trajectory sampled under certain rules in order to avoid any attempt to reconstruct the original one, we create a binary pseudo-random keystream that can only be exactly reproduced by someone that has fully knowledge of the communication system parameters formed by a transmitter and a receiver, sharing the same initial conditions. The plaintext is XOR’ed with the keystream creating the ciphertext, the encrypted message. This keystream passes the NIST’s randomness test and has been implemented in a videoconference App for smartphones, in order to show the fast and light nature of the proposed encryption system.  相似文献   

9.
A novel effect of any oxide particle/intermetallics enhancing hydrogen generation from water as compared to water alone when subjected to ultrasonic irradiation is reported here. Addition of methanol to water or decrease in particle size also improved the hydrogen yield. Hydrogen generation from water was further enhanced by the presence of both methanol and particles in water.  相似文献   

10.
A unique, new stand-alone acoustic inertial confinement nuclear fusion test device was successfully tested. Experiments using four different liquid types were conducted in which bubbles were self-nucleated without the use of external neutrons. Four independent detection systems were used (i.e., a neutron track plastic detector to provide unambiguous visible records for fast neutrons, a detector, a NE-113-type liquid scintillation detector, and a NaI gamma ray detector). Statistically significant nuclear emissions were observed for deuterated benzene and acetone mixtures but not for heavy water. The measured neutron energy was 相似文献   

11.
Emission lines from transitions between high-energy states of noble-gas atoms (Ne, Ar, Kr, and Xe) and ions (Ar(+), Kr(+), and Xe(+)) formed and excited during single-bubble cavitation in sulfuric acid are reported. The excited states responsible for these emission lines range 8.3 eV (for Xe) to 37.1 eV (for Ar(+)) above the respective ground states. Observation of emission lines allows for identification of intracavity species responsible for light emission; the populated energy levels indicate the plasma generated during cavitation is comprised of highly energetic particles.  相似文献   

12.
The influence of the spatial distribution of electrons, atoms, and nuclei in condensed media on a medium’s susceptibility and on the conditions for the formation of short-wavelength Cherenkov radiation are considered. It is shown that taking into account the inhomogeneous (atomic and electronic) structure of material media in which fast charged particles travel leads to a change in the effective susceptibility and permittivity in the X-ray range, as compared with cases of model homogeneous media with the same average concentration of electrons. The influence of the distribution functions of electrons and nuclei in a target on the conditions for Cherenkov radiation generation and its parameters and on the threshold energy of fast charged particles required to generate such radiation is studied. It is shown that the function of the spatial distribution of electrons and nuclei in a target affects the conditions for generating laser radiation in the X- and λ-ray ranges (on the problem of X- and λ-ray lasers). The obtained results show that using the Fresnel approximation in the X-ray range is insufficiently justified and can lead to significant errors.  相似文献   

13.
Based on reported experimental data, a new model for single cavitation bubble dynamics is proposed considering a supercritical water(SCW) shell surrounding the bubble. Theoretical investigations show that the SCW shell apparently slows down the oscillation of the bubble and cools the gas temperature inside the collapsing bubble. Furthermore, the model is simplified to a Rayleigh–Plesset-like equation for a thin SCW shell. The dependence of the bubble dynamics on the thickness and density of the SCW shell is studied. The results show the bubble dynamics depends on the thickness but is insensitive to the density of the SCW shell. The thicker the SCW shell is, the smaller are the wall velocity and the gas temperature in the bubble. In the authors' opinion, the SCW shell works as a buffering agent. In collapsing, it is compressed to absorb a good deal of the work transformed into the bubble internal energy during bubble collapse so that it weakens the bubble oscillations.  相似文献   

14.
A thermodynamic approach to the sputtering of materials by slow multicharged ions is developed based on the cavitation mechanism of fracture of the surface layer of a target. It is shown that a strong electric field of a slow multicharge ion approaching the surface of a dielectric target leads to the formation of an extended metastable subsurface region. Cavities spontaneously appearing in this region form a percolation cluster leading to the fracture (cavitational electroexplosive erosion) of the target material. Universal relationships established between the volume of the region of fracture, on the one hand, and the ion charge and the target surface properties, on the other hand, qualitatively agree with experimental data on the sputtering of LiF and SiO2 by slow argon and xenon ions.  相似文献   

15.
16.
N. Vogel 《JETP Letters》1998,67(9):647-654
The dynamics of x-ray emission from a low-voltage laser-induced discharge was studied with the aid of a picosecond x-ray streak camera. Directed x-ray emission in the spectral range from 100 eV to 10 keV in the form of point sources and thin layers with lifetimes ranging from 30 ps to 1 ns was observed in a low-voltage vacuum discharge (U=150 V) initiated by a picosecond laser beam. X-ray emission from a discharge was detected with a time delay (1–20 ns) relative to ignition by the laser beam in order to prevent the radiation of the laser plasma from entering the detector. Detection of directed x-ray emission in a low-voltage vacuum discharge is demonstrated. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 9, 622–627 (10 May 1998)  相似文献   

17.
18.
In the industrial cleaning processes either organic solvents or water solutions are used as the cleaning media. The primary causative factor of ultrasonic cleaning is cavitation. Below are presented results of investigations into the influence of temperature, gas content and the solution level in an ultrasonic cleaner on cavitation intensity in the tap water. Previous investigations have revealed a great deal of information on the influence of the above factors on the cavitation intensity and these are confirmed. It has now been found that the tap water reaches the highest cavitation intensity at temperatures below 20 degrees C but during heating at higher temperatures (20-40 degrees C) a second peak of cavitation intensity may appear-depending on the height of water in the bath and air content.  相似文献   

19.
High-intensive ultrasonic vibrations have been recognized as an attractive tool for refining the grain structure of metals in casting technology. However, the practical application of ultrasonics in this area remains rather limited. One of the reasons is a lack of data needed to optimize the ultrasonic treatment conditions, particularly those concerning characteristics of cavitation zone in molten aluminum.The main aim of the present study was to investigate the intensity and spectral characteristics of cavitation noise generated during radiation of ultrasonic waves into water and molten aluminum alloys, and to establish a measure for evaluating the cavitation intensity. The measurements were performed by using a high temperature cavitometer capable of measuring the level of cavitation noise within five frequency bands from 0.01 to 10 MHz. The effect of cavitation treatment was verified by applying high-intense ultrasonic vibrations to a DC caster to refine the primary silicon grains of a model Al–17Si alloy. It was found that the level of high frequency noise components is the most adequate parameter for evaluating the cavitation intensity. Based on this finding, it was concluded that implosions of cavitation bubbles play a decisive role in refinement of the alloy structure.  相似文献   

20.
The paper presents the results of studying the combined shock-wave radiation-emission processes associated with cavitation phenomena that occur at fast directional motion of a liquid jet into a closed working chamber through narrow dielectric channels. These processes induce high-power tunable X-ray radiation outside the chamber. At a relatively small liquid pressure, cavitation has been shown to generate shock waves in the chamber walls, which excites surface atoms and leads to the emission of X-rays from the outer surface of the chamber. At a high liquid pressure, the liquid jet does not touch the chamber walls and the cavitational shock waves lead to the excitation of the surface atoms of the jet itself accompanied by the generation of optical and X-ray radiation in the jet, which has been also observed in experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号