首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
This study quantifies degradation of polyethylene oxide (PEO) and polyacrylamide (PAM) polymer solutions in large diameter (2.72 cm) turbulent pipe flow at Reynolds numbers to 3 × 105 and shear rates greater than 105 1/s. The present results support a universal scaling law for polymer chain scission reported by Vanapalli et al. (2006) that predicts the maximum chain drag force to be proportional to Re 3/2, validating this scaling law at higher Reynolds numbers than prior studies. Use of this scaling gives estimated backbone bond strengths from PEO and PAM of 3.2 and 3.8 nN, respectively. Additionally, with the use of synthetic seawater as a solvent the onset of drag reduction occurred at higher shear rates relative to the pure water solvent solutions, but had little influence on the extent of degradation at higher shear rates. These results are significant for large diameter pipe flow applications that use polymers to reduce drag.  相似文献   

2.
The paper deals with fully developed steady turbulent flow of slurry in a circular straight and smooth pipe. The Kaolin slurry consists of very fine solid particles, so the solid particles concentration, and density, and viscosity are assumed to be constant across the pipe. The mathematical model is based on the time averaged momentum equation. The problem of closure was solved by the Launder and Sharma k-ε turbulence model (Launder and Sharma, Lett Heat Mass Transf 1:131–138, 1974) but with a different turbulence damping function. The turbulence damping function, used in the mathematical model in the present paper, is that proposed by Bartosik (1997). The mathematical model uses the apparent viscosity concept and the apparent viscosity was calculated using two- and three-parameter rheological models, namely Bingham and Herschel–Bulkley. The main aim of the paper is to compare measurements and predictions of the frictional head loss and velocity distribution, taking into account two- and three-parameter rheological models, namely Bingham and Herschel–Bulkley, if the Kaolin slurry possesses low, moderate, and high yield stress. Predictions compared with measurements show an observable advantage of the Herschel–Bulkley rheological model over the Bingham model particularly if the bulk velocity decreases.  相似文献   

3.
The effects of shear, uniaxial extension and temperature on the flow-induced crystallization of two different types of high-density polyethylene (a metallocene and a ZN-HDPE) are examined using rheometry. Shear and uniaxial extension experiments were performed at temperatures below and well above the peak melting point of the polyethylenes in order to characterize their flow-induced crystallization behavior at rates relevant to processing (elongational rates up to 30 s − 1 and shear rates 1 to 1,000 s − 1 depending on the application). Generally, strain and strain rate found to enhance crystallization in both shear and elongation. In particular, extensional flow was found to be a much stronger stimulus for polymer crystallization compared to shear. At temperatures well above the melting peak point (up to 25°C), polymer crystallized under elongational flow, while there was no sign of crystallization under simple shear. A modified Kolmogorov crystallization model (Kolmogorov, Bull Akad Sci USSR, Class Sci, Math Nat 1:355–359, 1937) proposed by Tanner and Qi (Chem Eng Sci 64:4576–4579, 2009) was used to describe the crystallization kinetics under both shear and elongational flow at different temperatures.  相似文献   

4.
The Bingham fluid flow is numerically studied using the lattice Boltzmann method by incorporating the Papanastasiou exponential modification approach. The He–Luo incompressible lattice Boltzmann model is employed to avoid numerical instability usually encountered in non-Newtonian fluid simulations due to a strong non-linear relationship between the shear rate tensor and the rate-of-strain tensor. First, the value of the regularization parameter in Bingham fluid mimicking is analyzed and a method to determine the value is proposed. Then, the model is validated by pressure-driven planar channel flow and planar sudden expansion flow. The velocity profiles for the pressure-driven planar channel flow are in good agreement with analytical solutions. The calculated reattachment lengths for a 2:1 planar sudden expansion flow also agree well with the available data. Finally, the Bingham flow over a cavity is studied, and the streamlines and yielded/unyielded regions are discussed.  相似文献   

5.
This paper presents the results of an evaluation of the rheological properties of commercial bentonite suspensions made from peptized and unpeptized clay samples collected over a six year time span. The rheological properties of these suspensions were measured between shear rates of 5.11 to 1022 s–1 at concentrations of 15, 30, 45, 64.2 and 70 kg/m3. Bingham, power-law and Casson models were then fitted to the shear stress and shear rate values. Parameters derived from these models were then subjected to further analyses. Four rheological methods (termed peptization index tests) were developed to differentiate between peptized and unpeptized bentonite samples.  相似文献   

6.
We study the shear problem for nematic polymers as modeled by the molecular kinetic theory of Doi (1981), focusing on the anomalous slow flow regime. We provide the kinetic phase diagram of monodomain (MD) attractors and phase transitions vs normalized nematic concentration (N) and weak normalized shear rate (Peclet number, Pe). We then overlay all rheological features typically reported in experiments: alignment properties, normal stress differences and shear stress. These features play a critical role in the synthesis between theory and experiment for nematic polymers (Larson 1999; Doi and Edwards 1986). MD type is routinely used for rheological shear characterization: cf., flow-aligning 5CB (Mather et al. 1996a), tumbling PBT (Srinivasarao and Berry 1991), and 8CB (Mather et al. 1996b), evidence for a wagging regime (Mewis et al. 1997), out-of-plane kayaking modes (Larson and Ottinger 1991), and evidence for chaotic major director dynamics (Bandyopadhyay et al. 2000). MD transitions correlate with sign changes in normal stresses (Larson and Ottinger 1991; Magda et al. 1991; Kiss and Porter 1978, 1980). Furthermore, structure formation in shear devices appears to be correlated with monodomain precursor dynamics (Tan and Berry 2003; Forest et al. 2002a). In this paper we combine seminal kinetic theory results (Kuzuu and Doi 1983, 1984; Larson 1990; Larson and Ottinger 1991; Faraoni et al. 1999; Grosso et al. 2001), symmetry observations (Forest et al. 2002b), and mesoscopic results on the fate of orientational degeneracy in weak shear (Forest and Wang 2003; Forest et al. 2003a), together with our resolved numerical simulations, to provide the kinetic flow-phase diagram of Doi theory in the weak shear regime, 0<Pe<1, for infinitely thin rods. We report the "birth" of key rheological features at the onset of flow: sign changes and local maxima and minima in normal stress differences (N1 and N2) associated with MD transitions. These results serve as the basis for continuation of the kinetic phase diagram to Pe>1 ; as the definitive benchmark for any mesoscopic or continuum model; and experimental data can be compared in order to determine accuracy and limitations of the Doi theory in weak shear.  相似文献   

7.
We discuss properties of solutions of the Bingham flow equations for visco-plastic fluids through an eccentric annular cross-section. Particularly, we perform arguments which are not in favor of the well-known Szabo–Hassager’s conjecture that the rigid zone is confined by circles provided the eccentricity is small (J Non-Newtonian Fluid Mech 45:149-169, 1992).  相似文献   

8.
The adverse pressure gradient induced by a surface-mounted obstacle in a turbulent boundary layer causes the approaching flow to separate and form a dynamically rich horseshoe vortex system (HSV) in the junction of the obstacle with the wall. The Reynolds number of the flow (Re) is one of the important parameters that control the rich coherent dynamics of the vortex, which are known to give rise to low-frequency, bimodal fluctuations of the velocity field (Devenport and Simpson, J Fluid Mech 210:23–55, 1990; Paik et al., Phys Fluids 19:045107, 2007). We carry out detached eddy simulations (DES) of the flow past a circular cylinder mounted on a rectangular channel for Re = 2.0 × 104 and 3.9 × 104 (Dargahi, Exp Fluids 8:1–12, 1989) in order to systematically investigate the effect of the Reynolds number on the HSV dynamics. The computed results are compared with each other and with previous experimental and computational results for a related junction flow at a much higher Reynolds number (Re = 1.15 × 105) (Devenport and Simpson, J Fluid Mech 210:23–55, 1990; Paik et al., Phys Fluids 19:045107, 2007). The computed results reveal significant variations with Re in terms of the mean-flow quantities, turbulence statistics, and the coherent dynamics of the turbulent HSV. For Re = 2.0 × 104 the HSV system consists of a large number of necklace-type vortices that are shed periodically at higher frequencies than those observed in the Re = 3.9 × 104 case. For this latter case the number of large-scale vortical structures that comprise the instantaneous HSV system is reduced significantly and the flow dynamics becomes quasi-periodic. For both cases, we show that the instantaneous flowfields are dominated by eruptions of wall-generated vorticity associated with the growth of hairpin vortices that wrap around and disorganize the primary HSV system. The intensity and frequency of these eruptions, however, appears to diminish rapidly with decreasing Re. In the high Re case the HSV system consists of a single, highly energetic, large-scale necklace vortex that is aperiodically disorganized by the growth of the hairpin mode. Regardless of the Re, we find pockets in the junction region within which the histograms of velocity fluctuations are bimodal as has also been observed in several previous experimental studies.  相似文献   

9.
We present the results of lattice Boltzmann (LB) simulations for the planar-flow of viscoplastic fluids through complex flow channels. In this study, the Bingham and Casson model fluids are covered as viscoplastic fluid. The Papanastasiou (modified Bingham) model and the modified Casson model are employed in our LB simulations. The Bingham number is an essential physical parameter when considering viscoplastic fluid flows and the modified Bingham number is proposed for modified viscoplastic models. When the value of the modified Bingham number agrees with that of the “normal” Bingham number, viscoplastic fluid flows formulated by modified viscoplastic models strictly reproduce the flow behavior of the ideal viscoplastic fluids. LB simulations are extensively performed for viscoplastic fluid flows through complex flow channels with rectangular and circular obstacles. It is shown that the LB method (LBM) allows us to successfully compute the flow behavior of viscoplastic fluids in various complicated-flow channels with rectangular and circular obstacles. For even low Re and high Bn numbers corresponding to plastic-property dominant condition, it is clearly manifested that the viscosity for both the viscoplastic fluids is largely decreased around solid obstacles. Also, it is shown that the viscosity profile is quite different between both the viscoplastic fluids due to the inherent nature of the models. The viscosity of the Bingham fluid sharply drops down close to the plastic viscosity, whereas the viscosity of the Casson fluid does not rapidly fall. From this study, it is demonstrated that the LBM can be also an effective methodology for computing viscoplastic fluid flows through complex channels including circular obstacles.  相似文献   

10.
Deformation and wobbling of a liquid drop immersed in a liquid matrix were studied under mild shear conditions for various viscosity ratios. In situ visualization experiments were conducted on a homemade transparent Couette cell incorporated to the Paar Physica MCR500 shear rheometer. The effect of drop or matrix elasticity was examined and was found to play a major role in both deformation and wobbling processes. Experimental results were compared to Jackson and Tucker (J Rheol 47:659–682, 2003), Maffettone and Minale (J Non-Newton Fluid Mech 78:227–241, 1998) and Yu and Bousmina (J Rheol 47:1011–1039, 2003) ellipsoidal models. It was found that the agreement between the Newtonian models and the experimental results required an increase in the drop viscosity. Such increment in viscosity was found to scale with the first normal stress difference.  相似文献   

11.
From thermodynamic theory, a new three-dimensional model for elastoviscoplastic fluid flows is presented. It extends both the Bingham viscoplastic and the Oldroyd viscoelastic models. Fundamental flows are studied: simple shear flow, uniaxial elongation and large amplitude oscillatory shear. The complex moduli (G,G)(G,G) are found to be in qualitative agreement with experimental data for materials that present microscopic network structures and large scale rearrangements. Various fluids of practical interest, such as liquid foams, droplet emulsions or blood, present such elastoviscoplastic behavior: at low stress, the material behaves as a viscoelastic solid, whereas at stresses above a yield stress, the material behaves as a fluid.  相似文献   

12.
We study the rheological response of monodomain ellipsoidal biaxial liquid crystal polymers (BLCP) as well as bent-core or V-shaped liquid crystal polymers (VLCP) subject to steady and time-dependent small amplitude oscillatory shear in selected regions of the model as well as flow parameter space. We adopt the two newly developed hydrodynamical kinetic theories for ellipsoidal BLCPs and VLCPs, respectively (Sircar and Wang, PRE 78:061702, 2008, J Rheol 53:819–858, 2009; Sircar et al., Comm Math Sci (in press), 2010), in which a generalized Straley’s potential is used to represent the pairwise mean-field interaction of the mesoscopic system in biaxial phases. Transient shear stresses and normal stress differences corresponding to steady and small amplitude oscillatory shear are investigated; their variations with respect to the strength of the intermolecular potential, types of biaxial interaction, and changes in the aspect ratios for ellipsoidal BLCPs and the bent angle for VLCPs are explored.  相似文献   

13.
We describe a magneto-slit die of 0.34 mm height and 4.25 mm width attached to a commercial piston capillary rheometer, enabling the measurement of apparent flow curves of a magnetorheological fluid (MRF) in the high shear rate regime (apparent shear rates 276 up to 20,700 s???1, magnetic flux density up to 300 mT). The pressure gradient in the magnetized slit is measured via two pressure holes. While the flux density versus coil current without MRF could directly be measured by means of a Hall probe, the flux density with MRF was investigated by finite element simulations using Maxwell® 2D. The true shear stress versus shear rate is obtained by means of the Weissenberg–Rabinowitsch correction. The slit die results are compared to plate–plate measurements performed in a shear rate regime of 0.46 up to 210 s???1. It is shown that the Casson model yields a pertinent fit of the true shear stress versus shear rate data from plate–plate geometry. Finally, a joint fit of the slit and plate–plate data covering a shear rate range of 1 up to 50,000 s???1 is presented, again using the Casson model. The parameterization of the MRF behavior over the full shear rate regime investigated is of relevance for the design of MR devices, like, e.g., automotive dampers. In the Appendix, we demonstrate the drawbacks of the Bingham model in describing the same data. We also show the parameterization of the flow curves by applying the Herschel–Bulkley model.  相似文献   

14.
A linear stability analysis of a Rayleigh-Bénard Poiseuille flow is performed for yield stress fluids whether we use the Bingham or regularized models. A fundamental difference between those models is that the effective viscosity is not defined in the plug zone for the Bingham model, while it is defined in the whole domain for the regularized models. For these models, the viscosity depends highly on a parameter ? near the axis and increases drastically in an intermediate region. The convergence of the critical conditions between the simple and the Bingham models is not obtained. However, we show that the Bercovier and Papanastasiou models can tend to the exact Bingham results.  相似文献   

15.
Numerical Flow Simulation for Bingham Plastics in a Single-Screw Extruder   总被引:3,自引:0,他引:3  
Numerical simulations have been performed concerning the operation of a single-screw extruder, pumping a Bingham plastic under isothermal, developed flow conditions. Under the assumption of sufficiently low Reynolds numbers, inertia effects are neglected. The singular rheological behavior of the Bingham plastic is considered as the limiting case within a class of generalized Newtonian liquids with smooth constitutive equations. The validation of this regularization process is shown for a related flow problem where the Bingham solution is known analytically. A mixed finite-element method is applied to the flow in the screw-extruder to reduce the equations of motion, the continuity equation, and the regularized constitutive equation to a set of nonlinear algebraic equations, which are solved using a Newton method. In particular, the pumping characteristics of a given screw geometry are extracted from the finite-element calculations, i.e., the dependence of the volumetric flow rate and of the power requirement on the axial pressure drop, on the screw speed, and on the rheological parameters. Calculated flow fields clearly show the size and position of regions in the extruder channel where the Bingham plastic behaves like a solid. Received: 12 December 1995 and accepted 12 November 1996  相似文献   

16.
Experimental data of two low-density polyethylene (LDPE) melts at 200°C for both shear flow (transient and steady shear viscosity as well as transient and steady first normal stress coefficient) and elongational flow (transient and steady-state elongational viscosity) as published by Pivokonsky et al. (J Non-Newtonian Fluid Mech 135:58–67, 2006) were analysed using the molecular stress function model for broadly distributed, randomly branched molecular structures. For quantitative modelling of melt rheology in both types of flow and in a very wide range of deformation rates, only three nonlinear viscoelastic material parameters are needed: Whilst the rotational parameter, a 2, and the structural parameter, β, are found to be equal for the two melts considered, the melts differ in the parameter describing maximum stretch of the polymer chains.  相似文献   

17.
Nonlinear viscoelasticity of PP/PS/SEBS blends   总被引:1,自引:0,他引:1  
The nonlinear viscoelastic behavior of polypropylene/polystyrene (PP/PS) blends compatibilized or not with the linear triblock copolymer (styrene-ethylene-/butylene-styrene, SEBS) was investigated. Start-up of steady-shear at rates from 0.1 to 10 s–1 was carried out using a controlled strain rotational rheometer and a sliding plate rheometer for strain histories involving one or several shear rates. The shear stress and first normal shear stress difference were measured as functions of time, and the morphologies of the samples before and after shearing were determined. For each strain history except that involving a single shear rate of 0.1 s–1 the blends showed typical non-linear viscoelastic behavior: a shear stress overshoot/undershoot, depending on the history, followed by a steady state for each step. The first normal stress difference increased monotonically to a steady-state value. The values of the stresses increased with the addition of SEBS. The shear stress overshoot and undershoot and the times at which they occurred depended strongly on the strain history, decreasing for a subsequent shear rate step performed in the same direction as the former, and the time at which stress undershoot occurred increased for a subsequent shear rate step performed in the opposite direction, irrespective of the magnitude of the shear rate. This behavior was observed for all the blends studied. The time of overshoot in a single-step shear rate experiment is inversely proportional to the shear rate, and the steady-state value of N1 scaled linearly with shear rate, whereas the steady-state shear stress did not. The average diameter of the dispersed phase decreased for all strain histories when the blend was not compatibilized. When the blend was compatibilized, the average diameter of the dispersed phase changed only during the stronger flows. Experimental data were compared with the predictions of a model formulated using ideas of Doi and Ohta (1991), Lacroix et al. (1998) and Bousmina et al. (2001). The model correctly predicted the behavior of the uncompatibilized blends for single-step shear rates but not that of the compatibilized blends, nor did it predict morphologies after shearing.  相似文献   

18.
We discuss the anisotropy of the thermal conductivity tensor in polymer flow in this paper. Isotactic polypropylene (iPP) specimens were deformed by injection moulding at high shear rates and by steady shear at low shear rates, and were then quenched. The thermal conductivities parallel and perpendicular to the shear direction were measured using modulated differential scanning calorimetry (MDSC) in accordance with the ASTM E1952-01. The measured results showed that the thermal conductivity of the sheared polymer was anisotropic with an increase in the shear direction. The thermal conductivity can be regarded as varying either with the strain or the stress, as suggested by Van den Brule (1989). In addition to the Van den Brule mechanism, crystallization during flow also changes the thermal conductivity and this effect may often be dominant. Suggestions for procedures in processing computations, based on both effects, are given.  相似文献   

19.
The purpose of this paper is to extend the rheological predictions of the Doi-Hess kinetic theory for sheared nematic polymers from the anomalous weak shear regime (Forest et al. 2004a) to arbitrary shear rates, and to associate salient rheological and optical properties with the solution space of kinetic theory. Using numerical bifurcation software (AUTO), we provide the phase diagram of all stable monodomain orientational probability distribution functions (PDFs) and their phase transitions (bifurcations) vs nematic concentration (N) and normalized shear rate (Peclet number, Pe) for Pe1. Shear stresses, normal stress differences, the peak direction of the orientational distribution, and birefringence order parameters are calculated and illustrated for each type of PDF attractor: steady flow-aligning, both in and out of the flow deformation plane and along the vorticity axis; unsteady limit cycles, where the peak orientation direction rotates in-plane or around the vorticity axis or in bi-stable orbits tilted between them; and chaotic attractors first observed in kinetic simulations by Grosso et al. (2001). We pay particular attention to correlations between rheological features and the variety of monodomain phase transitions. Together with the weak flow regime, these results provide a nearly complete picture of the rheological consequences of the Doi-Hess kinetic theory for sheared monodomains of rigid, extreme aspect ratio, nematic rods or platelets.  相似文献   

20.
We report steady and transient measurements of particle orientation in a clay dispersion subjected to shear flow. An organically modified clay is dispersed in a Newtonian polymer matrix at a volume fraction of 0.02, using methods previously reported by Mobuchon et al. (Rheol Acta 46: 1045, 2007). In accord with prior studies, mechanical rheometry shows yield stress-like behavior in steady shear, while time dependent growth of modulus is observed following flow cessation. Measurements of flow-induced orientation in the flow-gradient plane of simple shear flow using small-angle and wide-angle X-ray scattering (SAXS and WAXS) are reported. Both SAXS and WAXS reveal increasing particle orientation as shear rate is increased. Partial relaxation of nanoparticle orientation upon flow cessation is well correlated with time-dependent changes in complex modulus. SAXS and WAXS data provide qualitatively similar results; however, some quantitative differences are attributed to differences in the length scales probed by these techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号