首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
α-1,3-Terminated galactose residues on glycoproteins and glycosphingolipids are recognized by natural anti-α-1,3-galactose antibodies in human serum and cause hyperacute rejection in pig-to-human xenotransplantation. Genetic depletion of α-1,3-galactosyl- transferase-1 in pigs abolishes the hyperacute rejection reaction. However, the isoglo- botriosylceramide (iGb3) synthase in pigs may produce additional α-1,3-terminated galactose residues on glycosphingolipids. In both α-1,3-galactosyltranserase-1 knockout mice and pigs, cytotoxic anti-α-1,3-galactose antibodies could be induced; thus, a paradox exists that anti-α-1,3-galactose antibodies are present in animals with functional iGb3 synthases. Furthermore, iGb3 has been found to be an endogenous antigen for natural killer T (NKT) cells, an innate type of lymphocyte that may initiate the adaptive immune responses. It has been reasoned that iGb3 may trigger the activation of NKT cells and cause the rejection of α-1,3-galactosyltransferase-1-deficient organs through the potent stimulatory effects of NKT cells on adaptive immune cells (see ref.[20]). In this study, we examined the expression of iGb3 and the isoglobo-series glycosphingolipids in pig organs, including the heart, liver, pancreas, and kidney, by ion-trap mass spectrometry, which has a sensitivity of measuring 1% iGb3 among Gb3 isomers, when 5 μg/mL of the total iGb3/Gb3 mixture is present (see ref.[35]). We did not detect iGb3 or other isoglobo-series glycosphingolipids in any of these organs, although they were readily detected in mouse and human thymus and dendritic cells. The lack of iGb3 and isoglobo-series glycosphingolipids in pig organs indicates that iGb3 is unlikely to be a relevant immune epitope in xenotransplantation.  相似文献   

2.
Invariant natural killer T (iNKT) cells are innate T lymphocytes that express T cell receptors binding to exogenous and endogenous glycosphingolpid antigens presented by a nonpolymorphic, non-MHC antigen presenting molecule, CD1d. The endogenous glycosphingolipid metabolite, isoglobotrihexosylceramide (iGb3), is the first known natural ligand for both human and mouse iNKT cells, whose activity has been confirmed in a variety of iNKT cell clones generated by different investigators, representing the majority of the iNKT cell population. The signaling pathway mediated by T cell receptor is largely influenced by the structural variation of glycosphingolpid antigens, leading to multiple and varied biological functions of iNKT cells. In order to investigate the structural requirements behind iGb3 triggered iNKT cell activation, the structure-activity relationship (SAR) of iGb3 needs to be characterized. In this study, iGb3 analogues containing 2' ', 3' ', 4' ' and 6' ' deoxy terminal galactose were synthesized for probing the SAR between iGb3 and TCR. The biological assays on the synthetic iGb3 analogues were performed with use of the murine iNKT cell hybridoma DN32.D3. The results showed that the 2' ' and 3' ' hydroxyl groups of terminal galactose play more important roles for the recognition of iGb3 by TCR; while 4' ' and 6' ' hydroxyl groups were not as crucial for this recognition. These studies might help to understand the general structural requirements for natural endogenous ligands recognized by iNKT cells.  相似文献   

3.
Centrifugal partition chromatography (CPC) was applied to separate amphiphilic glycolipids and pseudo-glycolipids synthesized by using cells. Neutral and acidic lipid fractions were isolated by CPC under suitable conditions respectively. Separation of neutral lipid, Gb3-type and Gb4-type oligosaccharide synthesized by using cells, was performed with a two-phase solvent system composed of chloroform-methanol-water at a volume ratio of 5:6:4. On the other hand, separation of acidic lipid, GM3-type oligosaccharide synthesized by using cells, and ganglioside extracted from rat brain were performed with a two-phase solvent system composed of butanol-ethanol-1% acetic acid at a volume ratio of 4:1:5. 8.3mg of Gb3 analogue, 5.1mg of Gb4 analogue, and 19.5mg of GM3 analogue were purified from 3.2l of culture medium obtained by incubation of African green-monkey kidney (Vero) cells with 50 microM n-dodecyl beta-lactoside using CPC.  相似文献   

4.
The use of the bisfluorous chain-type propanoyl (Bfp) group as a fluorous protective group made it possible to rapidly synthesize the Gb2 and Gb3 oligosaccharide derivatives by a simple fluorous-organic extraction purification. Furthermore, the fluorescence-labeled Gb2 and Gb3 oligosaccharides were prepared as a potential Vero Toxins detecting reagent.  相似文献   

5.
Sialic‐acid‐binding, immunoglobulin‐type lectin‐7 (Siglec‐7) is present on the surface of natural killer cells. Siglec‐7 shows preference for disialylated glycans, including α(2,8)‐α(2,3)‐disialic acids or internally branched α(2,6)‐NeuAc, such as disialosylglobopentaose (DSGb5). Herein, DSGb5 was synthesized by a one‐pot multiple enzyme method from Gb5 by α2,3‐sialylation (with PmST1) followed by α2,6‐sialylation (with Psp2,6ST) in 23 % overall yield. DSGb5 was also chemoenzymatically synthesized. The protection of the nonreducing‐end galactose of Gb5 as 3,4‐O‐acetonide, 3,4‐O‐benzylidene, and 4,6‐O‐benzylidene derivatives provided DSGb5 in overall yields of 26 %, 12 %, and 19 %, respectively. Gb3, Gb4, and Gb5 were enzymatically sialylated to afford a range of globo‐glycans. Surprisingly, DSGb5 shows a low affinity for Siglec‐7 in a glycan microarray binding affinity assay. Among the synthesized globo‐series glycans, α6α3DSGb4 shows the highest binding affinity for Siglec‐7.  相似文献   

6.
A two-step binding assay for globotriaosylceramide (Gb3) content was developed by histidine-tagging strategy, which is a well-established method for the purification of recombinant proteins. The complete binding of the recombinant His-tagged Shiga toxin 1B subunit (1B-His) (1 microg/ml) to the standard Gb3 adsorbed on a multi-well H type plate was observed within 30 min at 37 degrees C; and its binding could be visualized by the following applications of HisProbe-HRP (8 microg/ml) and tetramethylbenzidine (TMB) peroxidase substrate. The 1B-His binding assay was linear over the range of 1 to 100 ng of Gb3 per well. The binding of 1B-His was specific to Gb3 separated from HeLa cells, and no major cross-reactivity of other glycolipids in Folch's lower fractions extracted from HeLa cells was detected. The glycolipids in Folch's lower fractions from HeLa cells, human fibroblasts and mouse heart were suitable for this assay, but the further purification was needed for glycolipids from human plasma, thus sample preparation is critical factor for the reliable determination of Gb3 content. The 1B-His binding to Gb3 was inhibited by the addition of galactose, but not mannose. This 1B-His binding assay will be useful not only for the determination of Gb3 content, but also for screening for the compounds which inhibit the toxin-binding to Gb3. The strategy of our present method may be applicable for other binding assay, such as Cholera toxin B-subunit for ganglioside GM1.  相似文献   

7.
The tumor-associated carbohydrate antigens Globo-H, SSEA-3, and Gb3 were synthesized in a linear fashion using glycosyl phosphate monosaccharide building blocks. All of the building blocks were prepared from readily available common precursors. The difficult alpha-(1-->4-cis)-galactosidic linkage was installed using a galactosyl phosphate donor with high selectivity. Introduction of the beta-galactosamine unit required the screening a variety of amine protecting groups to ensure good donor reactivity and protecting group compatibility. An N-trichloroacetyl-protected galactosamine donor performed best for the installation of the beta-glycosidic linkage. Conversion of the trichloroacetyl group to the N-acetyl group was achieved under mild conditions, fully compatible with the presence of multiple glycosidic bonds. This synthetic strategy is expected to be amenable to the synthesis of the globo-series of tumor antigens on solid-support.  相似文献   

8.
The mechanistic studies on immune recognition of carbohydrates have been paved by the synergized advances in identifying the precise sugar structures recognized by the immune system, in analyzing the cellular and humoral components bearing the receptors for glycoconjugates, and production of the biological relevant carbohydrate epitopes by synthetic chemistry. In our current studies on natural antigenic glycolipids, we have found that the activation as well as the development of natural killer T cells (NKT) is guided by the information provided by glycolipid metabolism pathways in antigen presenting cells (APC). Based on genetic data and cellular immunological assays, we propose a neutral glycosphingolipid isoglobotrihexosylceramide, iGb3, as one of the candidates recognized by NKT cells under patho-physiological conditions such as cancer and auto-immune disease. New immunotherapy approaches might be explored by interfering with glycolipid metabolism or by directly supplementing rationally designed glycolipids.  相似文献   

9.
Shiga toxin (Stx, synonymous to verotoxin, VT) binds with high and low affinity to the globo‐series neutral glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer or Galα4Galβ4Glcβ1Cer, also known as CD77) and globotetraosylceramide (Gb4Cer or GalNAcβ3Galα4Galβ4Glcβ1Cer), respectively, which represent the targets of Stxs on many different cell types. B‐cell‐derived Raji cells and THP‐1 cells of monocytic origin are widely used for the investigation of Stx‐mediated cellular response, because Stx is known to cause cell death in both cell lines. Despite their functional importance, the Stx receptors of Raji and THP‐1 cells have so far not been investigated. This prompted us to explore the structures of their GSL receptors in detail by means of nanoelectrospray ionization quadrupole time‐of‐flight mass spectrometry (nanoESI‐QTOF‐MS) with collision‐induced dissociation (CID) in conjunction with Stx1 as well as anti‐Gb3Cer and anti‐Gb4Cer antibodies. Using the combination of a thin‐layer chromatography (TLC) overlay assay and MS1 and MS2 analysis we identified Gb3Cer (d18:1, C24:1/C24:0) as the prevalent Stx1‐receptor accompanied by less abundant Gb3Cer (d18:1, C16:0) in the neutral GSL fraction of Raji cells. The same Gb3Cer species but with almost equal proportions of the C24:1/C24:0 and C16:0 variants were found in THP‐1 cells. In addition, unusual hydroxylated Gb3Cer (d18:1, C24:1/C24:0) and Gb3Cer (d18:1, C26:1) could be identified in trace quantities in both cell lines. As the most obvious difference between Raji and THP‐1 cells we observed the expression of Gb4Cer in THP‐1 cells, whereas Raji cells failed to express this elongation product of Gb3Cer. Both short‐ and long‐chain fatty acid carrying Gb4Cer (d18:1, C16:0) and Gb4Cer (d18:1, C24:1/C24:0), respectively, were the prevalent Gb4Cer variants. This first report on the differential expression of Gb3Cer and Gb4Cer and their structural diversity in lymphoid and myeloid cell lines supports the hypothesis that such heterogeneities might play a functional role in the molecular assembly of GSLs in membrane organization and cellular signaling of Stx‐susceptible cells. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Xia C  Zhou D  Liu C  Lou Y  Yao Q  Zhang W  Wang PG 《Organic letters》2006,8(24):5493-5496
Thio-isoglobotrihexosylceramide (S-iGb3) might be resistant to alpha-galactosidases in antigen-presenting cells and have a longer retaining time in the lysosome before being loaded to CD1d. The biological assay showed that S-iGb3 demonstrates a much higher increase as a stimulatory ligand toward invariant natural killer T (iNKT) cells as compared to iGb3. [structure: see text].  相似文献   

11.
Fusion of human immunodeficiency virus (HIV) to the cell membrane occurs by the specific binding of an envelope protein of HIV-1 (gp120 and gp160) and a glycosphingolipid of the cell membrane. In this study, quantitative and array-based affinity evaluation of gp120 and gp160 was performed by surface plasmon resonance (SPR) and the SPR imaging technique using a substrate immobilized with glycolipid-like compounds (Gb3, GM3, and Lac). Quantitative affinity evaluation showed that gp160 specifically bound to Gb3 and Lac compared with GM3, whereas gp120 showed lower binding affinity and specificity. Array-based evaluation showed that gp160 binds to Gb3 more favorably than Lac and GM3.  相似文献   

12.
Fabry disease is an X-linked lysosomal storage disorder caused by deficiency of α-galactosidase A, resulting in the accumulation of glycosphingolipids in various organs. Globotriaosylceramide (Gb3) and its isoforms and analogues have been identified and quantified as biomarkers of disease severity and treatment efficacy. The current study aimed to establish rapid methods for urinary Gb3 extraction and quantitation. Urine samples from 15 Fabry patients and 21 healthy control subjects were processed to extract Gb3 by mixing equal volumes of urine, methanol containing an internal standard, and chloroform followed by sonication and centrifugation. Thereafter, the lower phase was analyzed by MALDI-TOF MS and the relative peak areas of the internal standard and four major species of Gb3 determined. The results showed high reproducibility with intra- and inter-assay coefficients variation of 9.9% and 13.7%, respectively. The limit of detection was 0.15 ng/μL and the limit of quantitation was 0.30 ng/μL. Total urinary Gb3 levels in both genders of classic Fabry patients were significantly higher than in healthy controls (p < 0.0001). Gb3 levels in Fabry males were higher than in Fabry females (p = 0.08). We have established a novel assay for urinary total Gb3 that takes less than 15 min from start to finish.
Graphical Abstract ?
  相似文献   

13.
In this study, a novel polyhistidine-incorporated lipid nanoparticle (pHis/LNP) is developed for the delivery of therapeutic globotriaosylceramide (Gb3) synthase siRNAs using a microfluidic device with pHis as a biocompatible method of endosome escape. To inhibit the expression of Gb3 synthase, six siRNAs against Gb3 synthase are designed and an optimal siRNA sequence is selected. Selected Gb3 synthase siRNA is incorporated into pHis/LNP to prepare a spherical siRNA pHis/LNP with a size of 62.5 ± 1.9 nm and surface charge of −13.3 ± 4.2 mV. The pHis/LNP successfully protects siRNAs from degradation in 50% serum condition for 72 h. Prepared pHis/LNP exhibits superior stability for 20 days and excellent biocompatibility for A549 cells. After treatment with fluorescence-labeled LNPs, dotted fluorescent signals are co-localized with Lysotracker in cells with LNPs, whereas strong and diffused fluorescence intensity is observed in cells with pHis/LNPs probably due to successful endosomal escape. The extent of Gb3 synthase gene silencing by siRNA pHis/LNP is greatly improved (6.0-fold) compared to that by siRNA/LNP. Taken together, considering that the fabricated siRNA pHis/LNP exhibits excellent biocompatibility and superior gene silencing activity over conventional LNP, these particles can be utilized for the delivery of a wide range of therapeutic siRNAs.  相似文献   

14.
The synthesis of α-aminooxy trisaccharide moiety [α-d-Gal-(1,4)-β-d-Gal-(1,4)-β-d-Glc-α-aminooxy], related to the cell surface globotriaosylceramide (Gb3) receptor of the B subunit of the AB5 Shiga toxin of Shigella dysenteriae, has been carried out for the first time in 11 steps with a 15% overall isolated yield. A highlight of this work entails utilizing chemically compatible synthetic transformations, including those related to glycosylation, incorporative of the succinimidyl moiety as a precursor to the aminooxy Gb3 derivative. The fully deprotected trisaccharide aminooxy compound was reacted with a carbonyl compound, leading to oxime formation in quantitative yield, which underscores the importance for future glyco-conjugations.  相似文献   

15.
BaLiF3:Ce 3+纳米粒子的制备及其光谱特性   总被引:7,自引:0,他引:7  
BaLiF3属立方钙钛矿型复合氟化物, 作为高效闪烁晶体可用于热中子检测[1]. 由于其能带隙宽, 易于实现各种不同价态稀土离子掺杂, 可以获得许多可调谐性质, 因此它也是比较理想的光学功能材料的基质[2]. Ce3+激活的BaLiF3晶体作为紫外发射的短波固体激光材料和光放大材料的研究多有报道[3~5]  相似文献   

16.
以取代吲哚为原料,经维尔斯迈尔-哈克反应制得取代吲哚-3-甲醛,再通过DMSO/NaOH体系制得N-取代吲哚-3-甲醛(3a~3g);3a~3g经Na BH4还原合成了7个未见文献报道的取代吲哚-3-甲醇类衍生物(4a~4g),其结构经~1H NMR,~(13)C NMR和MS表征。  相似文献   

17.
(3E)-胆甾-4-烯-3,6-二酮-3-肟及其类似物的合成   总被引:4,自引:0,他引:4  
崔建国  范磊  黄立梁  肖蓉  黄燕敏 《合成化学》2007,15(6):689-692,743
以胆甾醇为原料,经氯铬酸吡啶氧化生成胆甾-4-烯-3,6-二酮(2),2与盐酸羟胺反应合成了(3E)-胆甾-4-烯-3,6-二酮-3-肟(3),总收率66%。利用合成3的反应条件合成了两个3的类似物——(3E)豆甾-4-烯-3,6-二酮-3-肟(6)和(3E)-谷甾-4-烯-3,6-二酮-3-肟(7)。2,3,6和7的结构经NMR和IR表征。  相似文献   

18.
Shiga toxin 1 (Stx1) represents an AB5 toxin produced by enterohemorrhagic Escherichia coli, which cause gastrointestinal diseases in humans that are often followed by potentially fatal systemic complications, such as acute encephalopathy and hemolytic uremic syndrome. The expression of the preferential Stx1 receptor, Gb3Cer/CD77 (Gal alpha1-4Gal beta1-4Glc beta1-1Cer), is one of the primary determinants of susceptibility to tissue injury. Due to the clinical importance of this life-threatening toxin, a combined strategy of preparative high-performance thin-layer chromatography (HPTLC) overlay assay and mass spectrometry was developed for the detection and structural characterization of Stx1-binding glycosphingolipids (GSLs). A preparation of neutral GSLs from human erythrocytes, comprising 21.4% and 59.1% of the high- and low-affinity Stx1-binding ligands Gb3Cer/CD77 and Gb4Cer, respectively, was separated on silica gel precoated HPTLC plates and probed for the presence of Stx1 receptors. Stx1 positive on the one hand and anti-Gb3Cer/CD77 and anti-Gb4Cer antibody positive bands from parallel reference runs on the other hand were extracted with chloroform/methanol/water (30/60/8, v/v/v). These crude extracts were used without any further purification for a detailed structural analysis by nanoelectrospray ionization quadrupole time-of-flight mass spectrometry (nanoESI-QTOF-MS) in the negative ion mode. In all extracts investigated, neutral GSLs were detected as singly charged deprotonated molecular ions, [M-H]-, and neither buffer-derived salt adducts nor coextracted contaminants from the overlay assay procedure or the silica gel layer were observed. For the structural characterization of Stx1- and antibody-binding GSLs low-energy collision-induced dissociation (CID) was applied to high and low abundant receptor species of the crude extracts. All MS/MS spectra obtained contained full series of Y-type ions, B-type ions and additional ions generated by ring cleavages of the sugar moiety. Only analytical quantities in the microgram scale of a single GSL species within the complex GSL mixture were required for the structural MS characterization of Stx1 ligands as Gb3Cer/CD77 and Gb4Cer. This effective combined HPTLC/MS procedure offers a broad range of applications, not only for toxins of bacterial origin, but also for any GSL-binding agents such as plant-derived lectins or human proteins with yet unknown binding specificities.  相似文献   

19.
BiflavonesareamorecomPlicatedclass0fflavonoids.MostofthemareusefulcomPonentsoftraditionalmedicinetocurediseases.Sincechamaejasminel,anewtoeofbiflavonoidpossessingaC-3/C-3"linkage,wasisolatedfromSteUerachamaejasmaeL.byHuangetal',especiallyafterthebiologicalactivityofani-cancerwasdiscovered',thestUdyof3,3"-biflavonoidshasattfactCdmuchattention.3-5ButtherehasbeennoprogressmentionedonthesynthesisofthiskindofcomPoundsinrecentdecades.AsaresultofoursystematicresearchonthesynthesisofchamaejasInin…  相似文献   

20.
低温凝胶燃烧法合成Y2O3∶Er3+,Yb3+纳米晶上转换发光材料   总被引:1,自引:0,他引:1  
分别以柠檬酸和甘氨酸为燃烧剂,采用低温凝胶燃烧法合成了Er3+、Yb3+共掺Y2O3纳米晶粉体。通过TG-DSC、XRD、SEM等分析手段对两种燃烧剂所对应的反应过程及纳米晶粉体的物理性能进行了分析,结果表明甘氨酸法具有更高的反应效率、更好的粉体分散性及粒径均匀性。在980 nm激光二极管(LD)激发下,对甘氨酸法所得样品的上转换发光性能分析表明,绿光和红光发射谱带分别来自于Er3+4S3/2/ 2H11/24I15/24F9/24I15/2跃迁。此外,对Er3+和Yb3+掺杂浓度、粉体煅烧温度对纳米晶样品上转换发光性能的影响进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号