首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the reaction mixture of 3,6-di-tert-butylcatechol, H2[3,6L(cat)], [CrCl3(thf)3], and NEt3 in CH3CN in the presence of air, the neutral complex [CrIII(3,6L*(sq))3] (S = 0) (1) was isolated. Reduction of 1 with [Co(Cp)2] in CH2Cl2 yielded microcrystals of [Co(Cp)2][CrIII(3,6L*(sq))2(3,6L(cat))] (S = 1/2) (2) where (3,6L*(sq)(1-) is the pi-radical monoanionic o-semiquinonate of the catecholate dianion (3,6Lcat)(2-). Electrochemistry demonstrated that both species are members of the electron-transfer series [Cr(3,6LO,O)]z (z = 0, 1-, 2-, 3-). The corresponding tris(benzo-1,2-dithiolato)chromium complex [N(n-Bu)4][CrIII(3,5L*S,S)2(3,5LS,S)] (S = 1/2) (3) has also been isolated; (3,5LS,S)(2-) represents the closed-shell dianion 3,5-di-tert-butylbenzene-1,2-dithiolate(2-), and (3,5L*S,S)(1-) is its monoanionic pi radical. Complex 3 is a member of the electron-transfer series [Cr(3,5L(S,S))3]z (z = 0, 1-, 2-, 3-). It is shown by Cr K-edge and S K-edge X-ray absorption, UV-vis, and EPR spectroscopies, as well as X-ray crystallography, of 1 and 3 that the oxidation state of the central Cr ion in each member of both electron-transfer series remains the same (+III) and that all redox processes are ligand-based. These experimental results have been corroborated by broken symmetry density functional theoretical calculations by using the B3LYP functional.  相似文献   

2.
The reactivity of the S-H bond in Cp*Mo(mu-S) 2(mu-SMe)(mu-SH)MoCp* ( S 4 MeH) has been explored by determination of kinetics of hydrogen atom abstraction to form the radical Cp*Mo(mu-S) 3(mu-SMe)MoCp* ( S 4 Me*), as well as reaction of hydrogen with the radical-dimer equilibrium to reform the S-H complex. From the temperature dependent rate data for the abstraction of hydrogen atom by benzyl radical, Delta H (double dagger) and Delta S (double dagger) were determined to be 1.54 +/- 0.25 kcal/mol and -25.5 +/- 0.8 cal/mol K, respectively, giving k abs = 1.3 x 10 (6) M (-1) s (-1) at 25 degrees C. In steady state abstraction kinetic experiments, the exclusive radical termination product of the Mo 2S 4 core was found to be the benzyl cross-termination product, Cp*Mo(mu-S) 2(mu-SMe)(mu-SBz)MoCp* ( S 4 MeBz), consistent with the Fischer-Ingold persistent radical effect. S 4 Me* was found to reversibly dimerize by formation of a weak bridging disulfide bond to form the tetranuclear complex (Cp*Mo(mu-S) 2(mu-SMe)MoCp*) 2(mu-S 2) ( ( S 4 Me) 2 ). The radical-dimer equilibrium constant has been determined to be 5.7 x 10 (4) +/- 2.1 x 10 (4) M (-1) from EPR data. The rate constant for dissociation of the dimer was found to be 1.1 x 10 (3) s (-1) at 25 degrees C, based on variable temperature (1)H NMR data. The rate constant for dimerization of the radical has been estimated to be 6.5 x 10 (7) M (-1) s (-1) in toluene at room temperature, based on the dimer dissociation rate constant and the equilibrium constant for dimerization. Structures are presented for ( S 4 Me) 2 , S 4 MeBz, and the cationic Cp*Mo(mu-S 2)(mu-S)(mu-SMe)MoCp*(OTf) ( S 4 Me ( + )), a precursor of the radical and the alkylated derivatives. Evidence for a radical addition/elimination pathway at an Mo 2S 4 core is presented.  相似文献   

3.
The intermolecular photoinduced electron transfer (PET) processes of 1,8-naphthalimide (NI) derivatives including NI-linker-phenothiazine dyads were investigated in a protic H(2)O/CH(3)CN (v/v=1:1) solvent using ns-laser flash photolysis with 355 nm-laser excitation. NI derivatives are surrounded by H(2)O in the ground state in H(2)O/CH(3)CN. The T(1)-T(n) absorption band of (3)NI* was observed at around 470 nm. The transient absorption band at around 410 nm increased concomitantly with the decay of (3)NI* in H(2)O/CH(3)CN. This implies that hydrated NI anion radical (NI*(-)) is primarily generated via the quenching of (3)NI* by NI at the diffusion control rate. This intermolecular PET did not occur in aprotic CH(3)CN. The formation and decay times of NI*(-) showed strong dependence on the concentration of NI. Then, we suggest that NI*(-) could undergo proton abstraction to give ketyl radical species of NI [NI(H)*] in H(2)O/CH(3)CN.  相似文献   

4.
The reaction of 3 equiv of the ligand 2-mercapto-3,5-di-tert-butylaniline, H2[LN,S], or 3,5-di-tert-butyl-1,2-benzenedithiol, H2[LS,S], with 1 equiv of [MoO2(acac)2] or WCl6 (acac=acetonylacetate(1-)) in methanol or CCl4 afforded the diamagnetic neutral complexes [MoV(LN,S)2(L*N,S)]0 (1), [MoV(LS,S)2(L*S,S)] (2), and [WV(LS,S)2(L*S,S)] (3), where (L*N,S)- and (L*S,S)- represent monoanionic pi-radical ligands (Srad=1/2), which are the one-electron oxidized forms of the corresponding closed-shell dianions (LN,S)2- and (LS,S)2-. Complexes 1-3 are trigonal-prismatic members of the electron-transfer series [ML3]z (z=0, 1-, 2-). Reaction of 2 and 3 with [N(n-Bu)4](SH) in CH2Cl2 under anaerobic conditions afforded paramagnetic crystalline [N(n-Bu)4][MoV(LS,S)3] (4) and [N(n-Bu)4][WV(LS,S)3] (5). Complexes 1-5 have been characterized by X-ray crystallography. S K-edge X-ray absorption and infrared spectroscopy prove that a pi-radical ligand (L*S,S)- is present in neutral 2 and 3, whereas the monoanions [MV(LS,S)3]- contain only closed-shell dianionic ligands. These neutral species have previously been incorrectly described as [MVI(L)3]0 complexes with a MoVI or WVI (d0) central metal ion; they are, in fact MV (d1) (M=Mo, W) species: [MoV(LS,S)2(L*S,S)] and [WV(LS,S)2(L*S,S)] with a diamagnetic ground state St=0, which is generated by intramolecular, antiferromagnetic coupling between the MV (d1) central ion (SM=1/2) and a ligand pi radical (L*S,S)- (Srad=1/2).  相似文献   

5.
A product and time-resolved kinetic study on the reactivity of the radical cations generated from cyclopropyl(4-methoxyphenyl)phenylmethanol (1) and cyclopropyl[bis(4-methoxyphenyl)]methanol (2) has been carried out in aqueous solution. In acidic solution, 1*+ and 2*+ display very low reactivities toward fragmentation, consistent with the presence of groups at Calpha (aryl and cyclopropyl) that after Calpha-Cbeta bond cleavage would produce relatively unstable carbon-centered radicals. In basic solution, 1*+ and 2*+ display oxygen acidity, undergoing -OH-induced deprotonation from the alpha-OH group, leading to the corresponding 1,1-diarylalkoxyl radicals 1r* and 2r*, respectively, as directly observed by time-resolved spectroscopy. The product distributions observed in the reactions of 1*+ and 2*+ under these conditions (cyclopropyl phenyl ketone, cyclopropyl(4-methoxyphenyl) ketone, and 4-methoxybenzophenone from 1*+; cyclopropyl(4-methoxyphenyl) ketone and 4,4'-dimethoxybenzophenone from 2*+) have been rationalized in terms of a water-induced competition between O-neophyl shift and C-cyclopropyl beta-scission in the intermediate 1,1-diarylalkoxyl radicals 1r* and 2r*.  相似文献   

6.
The properties and reactivities of the xanthone (Xn) ketyl radical (XnH*) in the doublet excited state (XnH*(D1)) were examined by using two-color two-laser flash photolysis. The absorption and fluorescence of XnH*(D1) were observed for the first time. Several factors governing the deactivation processes of XnH*(D1) such as interaction and reaction with solvent molecules were discussed. The remarkable change of reactivity of XnH*(D1) compared with that in the ground state (XnH*(D0)) was indicated from the experimental results. The rapid halogen abstraction of XnH*(D1) from some halogen donors such as carbon tetrachloride (CCl4) was found to occur. The halogen abstraction occurred more efficiently in the polar solvents than in the nonpolar solvents. It is suggested that the polar solvents promote the spin distribution of XnH*(D1) of the phenyl ring favorable to the halogen abstraction.  相似文献   

7.
The Balmer-β line of the excited deuterium atom [D*(n = 4)] produced in e—D2 collisions has been measured at high resolution (0.029–0.033 Å) and at various electron energies (17–100 eV). The translational energy distribution of D*(n = 4) has been calculated from analysis of its Doppler line shape. The distribution of D* has three major components as in the case of H*(n = 4) from H2 reported in our previous paper. Their peaks lie at about 0, 6 and 8 eV. The excitation function of D* is found to have two thresholds at 17.4 and 26.4 eV. The second component of D* has a larger translational energy and a higher threshold than those of the corresponding component of H*. These results indicate that the contribution from the lowest doubly excited state, 1Σg+(2pσu)2, is much smaller for D2 than that for H2.  相似文献   

8.
The previously unknown radical anions of unsaturated E2N4S2 ring systems (E=RC, R2NC, R2P) can be generated voltammetrically by the one-electron reduction of the neutral species and, despite half-lives on the order of a few seconds, have been unambiguously characterized by electron paramagnetic resonance (EPR) spectroelectrochemistry using a highly sensitive in situ electrolysis cell. Cyclic voltammetric studies using a glassy-carbon working electrode in CH3CN and CH2Cl2 with [nBu4N][PF6] as the supporting electrolyte gave reversible formal potentials for the [E2N4S2]0/- process in the range of -1.25 to -1.77 V and irreversible peak potentials for oxidation in the range of 0.66 to 1.60 V (vs the Fc+/0 couple; Fc=ferrocene). Reduction of the neutral compound undergoes an electrochemically reversible one-electron transfer, followed by the decay of the anion to an unknown species via a first-order (chemical) reaction pathway. The values of the first-order rate constant, kf, for the decay of all the radical anions in CH2Cl2 have been estimated from the decay of the EPR signals for (X-C6H4CN2S)2*-, where X=4-OCH3 (kf=0.04 s(-1)), 4-CH3 (kf=0.02 s(-1)), 4-H (kf=0.08 s(-1)), 4-Cl (kf=0.05 s(-1)), 4-CF3 (kf=0.05 s(-1)), or 3-CF3 (kf=0.07 s(-1)), and for [(CH3)3CCN2S]2*- (kf=0.02 s(-1)), [(CH3)2NCN2S]2*- (kf=0.05 s(-1)), and [(C6H5)2PN2S]2*- (kf=0.7 s(-1)). Values of kf for X=4-H and for [(CH3)2NCN2S]2*- were also determined from the cyclic voltammetric responses (in CH2Cl2) and were both found to be 0.05 s(-1). Possible pathways for the first-order anion decomposition that are consistent with the experimental observations are discussed. Density functional theory calculations at the UB3LYP/6-31G(d) level of theory predict the structures of the radical anions as either planar (D2h) or folded (C2v) species; the calculated hyperfine coupling constants are in excellent agreement with experimental results. Linear correlations were observed between the voltammetrically determined potentials and both the orbital energies and Hammett coefficients for the neutral aryl-substituted rings.  相似文献   

9.
Optically pure anionic complexes of pyridinecarboxamide ligands, N(2),N(6)-bis((R)-α-methylbenzyl)pyridine-2, 6-dicarboxamide H(2)(R,R-L(1)) and N(2),N(6)-bis((S)-1-methoxypropan-2-yl)pyridine-2, 6-dicarboxamide H(2)(S,S-L(2)) have been synthesised and fully characterised. The complexes: (18-crown-6)K[Co(III)(R,R-L(1))(2)], (18-crown-6)K[Fe(III)(R,R-L(1))(2)] and K[Co(III)(S,S-L(2))(2)]·3H(2)O show interesting extended structures from 0D discrete units through 1D zigzag chains to 2D honeycomb layers. The complex anions were used in the synthesis of radical cation salts with tetrathiafulvalene (TTF). The salts (TTF)[Co(III)(R,R-L(1))(2)] and (TTF)[Co(III)(S,S-L(2))(2)]·EtOAc were characterised by single crystal X-ray diffraction and conductivity measurements. Both compounds comprise mono-oxidised TTF molecules and exhibit similar layered structures with no direct TTF stacking but in which phenyl substituents from the complex anion or co-crystallised ethyl acetate alternate with TTF(+) units. Solution spectroscopic and cyclic voltammetric evidence points to the formation of soluble assemblies between TTF(+) and the counterion which correspond to the stoichiometry observed by crystallography and other methods in the solid state.  相似文献   

10.
Ytterbocene [Yb(C(5)MeH(4))(2)(thf)(2)] reacts with diazabutadiene 2,6-iPr(2)C(6)H(3)-N=CH-CH=N-C(6)H(3)iPr(2)-2,6 (DAD) as a one-electron reductant to afford a bis(cyclopentadienyl) Yb(III) derivative containing a DAD radical anion [Yb(C(5)MeH(4))(2)(dad(-.))]. However, ytterbocenes [YbCp*(2)(thf)(2)] (Cp*=C(5)Me(5), C(5)Me(4)H) coordinated by sterically demanding cyclopentadienyl ligands act as two-electron reductants in their reactions with DAD. These reactions occur by abstraction of one Cp* ring and result in the formation of novel Yb(III) mixed-ligand bent-sandwich complexes, [YbCp*(dad)(thf)], in which the dianion of DAD has an uncommon terminal eta(4)-coordination to the ytterbium atom. The variable-temperature magnetic measurements of complex [Yb(C(5)Me(5))(dad)(thf)] suggest the existence of redox tautomerism for this compound.  相似文献   

11.
The intercalation of fac-[(4,4'-bpy)Re(I)(CO)3(dppz)]+ (dppz = dipyridyl[3,2-a:2'3'-c]phenazine) in polynucleotides, poly[dAdT]2 and poly[dGdC]2, where A = adenine, G = guanine, C = cytosine and T = thymine, is a major cause of changes in the absorption and emission spectra of the complex. A strong complex-poly[dAdT]2 interaction drives the intercalation process, which has a binding constant, Kb approximately 1.8 x 10(5) M(-1). Pulse radiolysis was used for a study of the redox reactions of e(-)(aq), C*H(2)OH and N3* radicals with the intercalated complex. These radicals exhibited more affinity for the intercalated complex than for the bases. Ligand-radical complexes, fac-[(4,4'-bpy*)Re(I)(CO)3(dppz)] and fac-[(4,4'-bpy)Re(I)(CO)3(dppz *)], were produced by e(-)(aq) and C*H(2)OH, respectively. A Re(II) species, fac-[(4,4'-bpy)Re(II)(CO)3(dppz)](2+), was produced by N3* radicals. The rate of annihilation of the ligand-radical species was second order on the concentration of ligand-radical while the disappearance of the Re(II) complex induced the oxidative cleavage of the polynucleotide strand.  相似文献   

12.
The first examples of polymeric complexes that contain the polynitrile dianion hexacyanotrimethylenecyclopropanediide (HCTMCP(2-)) were isolated and their magnetic properties have been explored. Complexes of the form (n-TBA)(2)[M(HCTMCP)(2)(H(2)O)(2)] (1) (M = Mn(II), Fe(II), Co(II), Cd(II)) possess (4,4) sheet structures with large cavities that contain the tetra-n-butylammonium (n-TBA) countercations. Synthesis using sodium as the countercation yields a family of products with the general form [M(S)(4)M(S)(2)(HCTMCP)(2)] (S = EtOH, M = Fe(II) (2); S = MeOH, M = Co(II) or Zn(II) (3)). These complexes adopt a variety of two-dimensional (2D) structures. The complex [Mn(3)(HCTMCP)(2)(H(2)O)(12)](HCTMCP)·6(H(2)O) (4) contains cationic (6,3) sheets with the counteranion and solvent molecules encapsulated within the hexagonal windows. Complexes 1-4 display weak antiferromagnetic coupling in all cases. The first example of a complex that contains the CN-coordinated monoanionic radical HCTMCP (?-), [Cu(HCTMCP)(MeCN)(2)] (5) is described. This one-dimensional (1D) coordination polymer, containing tetrahedral Cu(I) centers, displays medium strength antiferromagnetic coupling that is mediated through π-interactions between the radical anions on adjacent chains.  相似文献   

13.
The reaction of [RuCl(CNN)(dppb)] (1; HCNN=6-(4-methylphenyl)-2-pyridylmethylamine) with NaOiPr in 2-propanol/C6D6 affords the alcohol adduct alkoxide [Ru(OiPr)(CNN)(dppb)].n iPrOH (5), containing the Ru-NH2 linkage. The alkoxide [Ru(OiPr)(CNN)(dppb)] (4) is formed by treatment of the hydride [Ru(H)(CNN)(dppb)] (2) with acetone in C6D6. Complex 5 in 2-propanol/C6D6 equilibrates quickly with hydride 2 and acetone with an exchange rate of (5.4+/-0.2) s(-1) at 25 degrees C, higher than that found between 4 and 2 ((2.9+/-0.4) s(-1)). This fast process, involving a beta-hydrogen elimination versus ketone insertion into the Ru-H bond, occurs within a hydrogen-bonding network favored by the Ru-NH2 motif. The cationic alcohol complex [Ru(CNN)(dppb)(iPrOH)](BAr(f)4) (6; Ar(f)=3,5-C6H3(CF3)2), obtained from 1, Na[BAr(f)4], and 2-propanol, reacts with NaOiPr to afford 5. Complex 5 reacts with either 4,4'-difluorobenzophenone through hydride 2 or with 4,4'-difluorobenzhydrol through protonation, affording the alkoxide [Ru(OCH(4-C6H4F)2)(CNN)(dppb)] (7) in 90 and 85 % yield of the isolated product. The chiral CNN-ruthenium compound [RuCl(CNN)((S,S)-Skewphos)] (8), obtained by the reaction of [RuCl2(PPh3)3] with (S,S)-Skewphos and orthometalation of HCNN in the presence of NEt3, is a highly active catalyst for the enantioselective transfer hydrogenation of methylaryl ketones (turnover frequencies (TOFs) of up to 1.4 x 10(6) h(-1) at reflux were obtained) with up to 89% ee. Also the ketone CF3CO(4-C6H4F), containing the strong electron-withdrawing CF3 group, is reduced to the R alcohol with 64% ee and a TOF of 1.5 x 10(4) h(-1). The chiral alkoxide [Ru(OiPr)(CNN)((S,S)-Skewphos)]n iPrOH (9), obtained from 8 and NaOiPr in the presence of 2-propanol, reacts with CF3CO(4-C6H4F) to afford a mixture of the diastereomer alkoxides [Ru(OCH(CF3)(4-C6H4F))(CNN)((S,S)-Skewphos)] (10/11; 74% yield) with 67% de. This value is very close to the enantiomeric excess of the alcohol (R)-CF3CH(OH)(4-C6H4F) formed in catalysis, thus suggesting that diastereoisomeric alkoxides with the Ru-NH2 linkage are key species in the catalytic asymmetric transfer hydrogenation reaction.  相似文献   

14.
A new polydentate ligand 4,4'-bipyridazine (4,4'-bpdz) was prepared by employing inverse electron demand cycloaddition of 1,2,4,5-tetrazine. A unique combination of structural simplicity, ampolydentate character and efficient donor properties towards Cu(I), Cu(II) and Zn(II) provide wide new possibilities for the synthesis of coordination polymers incorporating the 4,4'-bpdz module either as a bi-, tri- or tetradentate connector between the metal ions. 1D coordination polymers Cu(2)(4,4'-bpdz)(CH(3)CO(2))(4) x 4H(2)O and Zn(4,4'-bpdz)(NO(3))(2), and interpenetrated (4,4)-nets in [Cu(4,4'-bpdz)(2)(H(2)O)(2)]S(2)O(6) were closely related to 4,4'-bipyridine compounds. 1D "ladder-like" polymer Cu(2)(4,4'-bpdz)(3)(CF(3)CO(2))(4) and the unprecedented 3D binodal net ({8(6)}{6(3);8(3)}) in [Cu(3)(4,4'-bpdz)(6)(H(2)O)(4)](BF(4))(6) x 6H(2)O were based upon a combination of linear and angular organic bridges. Complex [Cu(3)(OH)(2)(4,4'-bpdz)(3)(H(2)O)(2){CF(3)CO(2)}(2)](CF(3)CO(2))(2) x 2H(2)O has a "NbO-like" 3D topology incorporating discrete dihydroxotricopper(II) clusters linked by tri- and tetradentate ligands. The tetradentate function of the 4,4'-bpdz ligand was especially relevant for copper(I) complexes, which adopt layered Cu(2)X(2)(4,4'-bpdz) (X = Cl, Br) or 3D chiral framework (X = I) structures based upon infinite (CuX)(n) chains. The electron deficient character of the ligand was manifested by short anion-pi interactions (O-pi 3.02-3.20; Cl-pi 3.35 A), which may be involved as a factor for controlling the supramolecular structure.  相似文献   

15.
The reaction of the bulky phospholide salt Li(2,5-tBu2PC4H2) x 2THF (1; THF = tetrahydrofuran) with [NiCp*(acac)] (HCp* = pentamethylcyclopentadiene, Hacac = acetylacetone) gives the green air-sensitive phosphanickelocene [NiCp*(2,5-tBu2PC4H2)] (2) in yields of about 85%. An X-ray structural determination of 2 shows long Ni-ring bonds and "delocalised" ring P-C and C-C bonds characteristic of a classical 20-valence-electron (ve) nickelocene. The electronic structure of 2 has been clarified through a combined Amsterdam density functional (ADF) and photoelectron spectroscopic study, which indicates that the higher lying semi-occupied molecular orbital (SOMO) (-5.82 eV) has a' symmetry and that the phosphorus "lone pair" is energetically low-lying (-8.15 eV). Oxidation of phosphanickelocene 2 by AgBF4 occurs quantitatively to give the corresponding air-sensitive orange phosphanickelocenium salt [NiCp*(2,5-tBu2PC4H2)][BF4] (3). This complex has also been characterised by an X-ray crystallographic study, which reveals long Ni-C(alpha) and short C(alpha)-C(beta) bonds in the phospholyl ligand indicative of a SOMO having a' symmetry. PMe3 reacts with 2 at room temperature to provoke a ring-slip reaction that gives the 18ve complex [NiCp*eta1-(2,5-tBu2PC4H2)(PMe3)] (4), but shows no reaction with the phosphanickelocenium salt 3 under the same conditions.  相似文献   

16.
One-electron reduction significantly enhances the ability of anthralin, 1, to act as a hydrogen atom donor. On annealing of an MTHF glass in which the radical anion of anthralin, 1*-, is generated radiolytically, this species decays mainly by loss of H* to give the anthralyl anion, 2- . On the other hand, radicals formed on radiolysis of matrices that are suitable for the generation of radical anions or cations are capable to abstract H* from anthralin to give the anthralyl radical, 2* . Both 2- and 2* are obtained simultaneously by mesolytic cleavage of the radical anion of the anthralin dimer. Contrary to general assumptions, the anthralyl radical is found to be much more reactive toward oxygen than the anion. All intermediates are characterized spectroscopically and by reference to quantum chemical calculations. Attempts to generate the radical cation of anthralin by X-irradiation of an Ar matrix containing anthralin led also to significant formation of its radical anion, i.e., anthralin acts apparently as an efficient electron trap in such experiments.  相似文献   

17.
The (*)OH-induced oxidation of 1,3,5-trithiacyclohexane (1) in aqueous solution was studied by means of pulse radiolysis with optical and conductivity detection. This oxidation leads, via a short-lived (*)OH radical adduct (<1 micros), to the radical cation 1(*+) showing a broad absorption with lambda(max) equal to 610 nm. A defined pathway of the decay of 1(*+) is proton elimination. It occurs with k = (2.2 +/- 0.2) x 10(4) s(-1) and yields the cyclic C-centered radical 1(-H)(*). The latter radical decays via ring opening (beta-scission) with an estimated rate constant of about 10(5) s(-1). A distinct, immediate product (formed with the same rate constant) is characterized by a narrow absorption band with lambda(max) = 310 nm and is attributed to the presence of a dithioester function. The formation of the 310 nm absorption can be suppressed in the presence of oxygen, the rationale for this being a reaction of the C-centered cyclic radical 1(-H)(*) with O(2). The disappearance of the 310 nm band (with a rate constant of 900 s(-1)) is associated with the hydrolysis of the dithioester functionality. A further aspect of this study deals with the reaction of H(*) atoms with 1 which yields a strongly absorbing, three-electron-bonded 2sigma/1sigma* radical cation [1(S therefore S)-H](+) (lambda(max) = 400 nm). Its formation is based on an addition of H(*) to one of the sulfur atoms, followed by beta-scission, intramolecular sulfur-sulfur coupling (constituting a ring contraction), and further stabilization of the S therefore S bond thus formed by protonation. [1(S therefore S)-H](+) decays with a first-order rate constant of about 10(4) s(-1). Its formation can be suppressed by the addition of oxygen which scavenges the H(*) atoms prior to their reaction with 1. Complementary time-resolved conductivity experiments have provided information on the quantification of the 1(*+) radical cation yield, the cationic longer-lived follow-up species, extinction coefficients, and kinetics concerning deprotonation processes as well as further reaction steps after hydrolysis of the transient dithioesters. The results are also discussed in the light of previous photochemical studies.  相似文献   

18.
The ionic metallocene complexes [Cp*(2)M][BPh(4)] (Cp* = C(5)Me(5)) of the trivalent 3d metals Sc, Ti, and V were synthesized and structurally characterized. For M = Sc, the anion interacts weakly with the metal center through one of the phenyl groups, but for M = Ti and V, the cations are naked. They each contain one strongly distorted Cp* ligand, with one (V) or two (Ti) agostic C-H...M interactions involving the Cp*Me groups. For Sc and Ti, these Lewis acidic species react with fluorobenzene and 1,2-difluorobenzene to yield [Cp*(2)M(kappaF-FC(6)H(5))(n)][BPh(4)] (M = Sc, n = 2; M = Ti, n = 1) and [Cp*(2)M(kappa(2)F-1,2-F(2)C(6)H(4))][BPh(4)], the first examples of kappaF-fluorobenzene and kappa(2)F-1,2-difluorobenzene adducts of transition metals. With the perfluorinated anion [B(C(6)F(5))(4)](-), both Sc and Ti form [Cp*(2)M(kappa(2)F-C(6)F(5))B(C(6)F(5))(3)] contact ion pairs. The nature of the metal-fluoroarene interaction was studied by density functional theory (DFT) calculations and by comparison with the corresponding tetrahydrofuran (THF) adducts and was found to be predominantly electrostatic for all metals studied.  相似文献   

19.
Addition of 1 equiv of potassium metal to a tetrahydrofuran (THF) solution of Zn(2)(4,4'-bipyridine)(mes)(4) (1; mes =2,4,6-Me(3)C(6)H(2)) in the presence of 18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane) yielded the radical anionic species [Zn(2)(4,4'-bipyridine)(mes)(4)](?-), which was characterized by single crystal X-ray diffraction in [K(18-crown-6)(THF)(2)][Zn(2)(4,4'-bipyridine)(mes)(4)] (2). A similar reaction employing 2 equiv of alkali metal afforded the related complex [K(18-crown-6)](2)[Zn(2)(4,4'-bipyridine)(mes)(4)] (3). The [Zn(2)(4,4'-bipyridine)(mes)(4)](n-) (n = 0-2) moieties present in 1-3 are largely isostructural, yet exhibit significant structural variations which arise because of differences in their electronic structure. These species represent a homologous series of complexes in which the ligand exists in three distinct oxidation states. Structural data, spectroscopic measurements, and density functional theory (DFT) calculations are consistent with the assignment of 1, 2, and 3 as complexes of the neutral, radical anionic, and dianionic 4,4'-bipyridyl ligand, respectively. To the best of our knowledge, species 2 and 3 are the first crystallographically characterized transition metal complexes of the 4,4'-bipyridyl radical and dianion.  相似文献   

20.
The photochemical treatment of mu(3)-alkylidyne complexes [[TiCp*(mu-O)](3)(mu(3)-CR)] (R=H (1), Me (2), Cp*=eta(5)-C(5)Me(5)) with the amines (2,6-Me(2)C(6)H(3))NH(2), Et(2)NH, and Ph(2)NH and the imine Ph(2)C=NH leads to the partial hydrogenation of the alkylidyne moiety that is supported on the organometallic oxide, [Ti(3)Cp*O(3)], and the formation of new oxoderivatives [[TiCp*(3)(mu-CHR)(R'NR")] (R"=2,6-Me(2)C(6)H(3), R'=H, R=H (3), Me (4); R'=R"=Et, R=H (5), Me (6); R'=R"=Ph, R=H (7), Me (8)) and [[TiCp*(mu-O)](3)(mu-CHR)(N=CPh(2))] (R=H (9), R=Me (10)), respectively. A sequential transfer hydrogenation process occurs when complex 1 is treated with tBuNH(2), which initially gives the mu-methylene [[TiCp*(mu-O)](3)(mu-CH(2))(HNtBu)] (11) complex and finally, the alkyl derivative [[TiCp*(mu-O)](3)(mu-NtBu)Me] (12). Furthermore, irradiation of solutions of the mu(3)-alkylidyne complexes 1 or 2 in the presence of diamines o-C(6)H(4)(NH(2))(2) and H(2)NCH(2)CH(2)NH(2) (en) affords [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(6)H(4)NH)] (13) and [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(2)H(4)NH)] (14) by either methane or ethane elimination, respectively. In the reaction of 1 with en, an intermediate complex [[TiCp*(mu-O)](3)(mu-CH(2))(NHCH(2)CH(2)NH(2))] (15) is detected by (1)H NMR spectroscopy. Thermal treatment of the complexes 4-10 quantitatively regenerates the starting mu(3)-alkylidyne compounds and the amine R'(2)NH or the imine Ph(2)C=NH; however, heating of solutions of 3 or 4 in [D(6)]benzene or a equimolecular mixture of both at 170 degrees C produces methane, ethane, or both, and the complex [[TiCp*(mu-O)](3)[mu(3)-eta(2)-NC(6)H(3)(Me)CH(2)]] (16). The molecular structure of 8 has been established by single-crystal X-ray analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号