首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Kozhushko VV  Hess P 《Ultrasonics》2008,48(6-7):488-491
The anisotropy of the elastic properties of single-crystal silicon manifests itself in features of both the linear and nonlinear surface acoustic wave (SAW) propagation. Directions showing the phonon-focusing effect and strong nonlinearity were employed in contact-free and notch-free laser-based fracture experiments, yielding the intrinsic strength of silicon. The critical tensile stress values vary between 2.5 GPa and 7 GPa for the different crystallographic planes and directions of SAW propagation investigated.  相似文献   

2.
This paper presents theoretical investigation of the propagation of surface acoustic waves (SAWs) across the boundary between metallized (electrically shorted) and unmetallized (electrically open) regions on the surface of potassium niobate crystals. Potassium niobate is a very strong piezoelectric material and has the interesting property that only one type of SAW, namely a Rayleigh wave, can exist on unmetallized surface, where as two types of SAWs, namely Rayleigh and Bleustein-Gulyaev (BG), can exist on a metallized surface. Analysis shows that the Rayleigh wave propagates through the interface with very little change in amplitude or polarization. On the other hand, almost total reflection of the BG wave is expected. Details of the theoretical analysis and calculated results will be presented.  相似文献   

3.
Mozhaev VG  Weihnacht M 《Ultrasonics》2000,37(10):687-691
The extraordinary case of increase in velocity of surface acoustic waves (SAW) caused by electrical shorting of the surface of the superstrong piezoelectric crystal potassium niobate, KNbO3, is numerically found. The explanation of this effect is based on considering SAWs as coupled Rayleigh and Bleustein-Gulyaev modes. A general procedure of approximate decoupling of the modes is suggested for piezoelectric crystals of arbitrary anisotropy. The effect under study takes place when the phase velocity of uncoupled sagittally polarized Rayleigh waves is intermediate between the phase velocities of uncoupled shear-horizontal Bleustein Gulyaev waves at the free and metallized surfaces. In this case, the metallization of the surface by an infinitely thin layer may cause a crossover of the velocity curves of the uncoupled waves. The presence of the mode coupling results in splitting of the curves with transition from one uncoupled branch to the other. This transition is responsible for the increase in SAW velocity, which appears to be greater than its common decrease produced by electrical shorting of the substrate surface.  相似文献   

4.
《Physics letters. A》2001,280(3):157-161
The nonlinear propagation of very high-amplitude surface acoustic wave (SAW) pulses in polycrystalline aluminum and copper was studied. A nonlinear compression and an increase of the SAW pulse amplitude have been observed. SAW pulses were numerically simulated with a nonlinear evolution equation including local and nonlocal nonlinear terms.  相似文献   

5.
Acoustical Physics - The authors have carried out an experimental and theoretical study of the propagation of surface acoustic waves (SAW)—Rayleigh, Sezawa and SH-modes, as well as Lamb waves...  相似文献   

6.
Surface acoustic waves (SAW) have been measured by means of Brillouin scattering (BS) both as a function of k×h and the direction of k in the sample plane (k is the wavevector of the surface acoustic mode and h the thickness of the film). The velocity of the Rayleigh wave on sufficiently thick films (h > 4000 Å) has been experimentally found to ve uneffected by the elastic properties of the substrate material. Thus the directional dependence of the hypersonic surface wave is completely determined by the elastic properties of the layer material alone and reflects its crystallographic symmetry. The SL's can be treated as media with effective elastic constants because the wavelength of the thermally excited Rayleigh wave is much longer than the SL period. Furthermore, the angular dispersion of the SAW can be used to calculate the elastic constants of each film separately.  相似文献   

7.
Belloncle VV  Rousseau M 《Ultrasonics》2006,45(1-4):188-195
The aim of this paper is to evaluate the influence of the surface free energy upon the propagation of the eigenmodes of structures, by studying successively (a) the Rayleigh wave for an elastic half-space, (b) the Lamb waves for an elastic layer, and (c) the guided modes for a tri-layer structure (e.g., metal/adhesive/metal). The surface free energy is a parameter which appears in the jump conditions of stresses and displacements at each interface, and which consequently modifies the eigenmodes, solutions of the boundary conditions system. As expected, the Rayleigh wave is dispersive and its velocity increases when the surface free energy increases. In the same way, the velocity of Lamb waves also increases except at normal angle of propagation where the surface free energy does not arise. Moreover, near the Rayleigh angle, the behaviour of the A0 and S0 Lamb modes varies strongly according to the surface free energy. Similar results are observed for the tri-layer structure.  相似文献   

8.
The anisotropic propagation of surface acoustic modes in GaN and AlN induced by the c-sapphire substrate is presented. In the GaN case, the slow acoustic propagation velocity of GaN compared with sapphire leads to guided modes in the overlayer, which propagate at higher velocities but are more attenuated than the Rayleigh mode. Above the transonic state, pseudo-SAW modes are observed, some of them with low insertion losses. In contrast, only the Rayleigh mode is observed in AlN filters due to its higher acoustic propagation velocity with respect to sapphire. The difference in the crystal structure of the sapphire and the nitrides induces a dependence of the sound velocity of all the modes, and hence their frequency, on the propagation direction. The simulations show very good agreement with the experimental data for both nitride/sapphire structures when the anisotropy induced by the substrate is taken into account.  相似文献   

9.
Based on the thermoelastic theory, a finite element model is developed to simulate the process of laser inducing ultrasonic field in isotropic cylinders, which can take the temperature dependence of thermal parameters into account. Using the finite element model, we have simulated the ultrasonic fields induced by a pulse laser line source impacting on the generatrix of aluminum cylinders with different diameters. And the intact waveforms of surface acoustic wave (SAW including cylindrical Rayleigh and Whispering gallery (WG) modes) are presented, which are in very good agreement with the calculated and experimental waveforms in other literatures. Furthermore, the dispersion properties of cylindrical Rayleigh waves are analyzed by the method of phase spectral analysis, and the results show that with the increasing frequency, the phase velocity of cylindrical Rayleigh wave rapidly increases to the maximum value, and then gradually decreases to that of plane Rayleigh wave. With the diameter of cylinder decreasing, the maximum value of phase velocity and the corresponding frequency increase.  相似文献   

10.
Shilo D  Zolotoyabko E 《Ultrasonics》2002,40(1-8):921-925
Stroboscopic X-ray topography at the synchrotron beam line was used to visualize the propagation of a 580 MHz surface acoustic waves (SAW) in LiNbO3 crystals. For this purpose, the X-ray bursts coming from the synchrotron storage ring with periodicity of 5.68 MHz were synchronized with the SAW frequency in a phase-locked mode. This method allowed us to "stop" the SAW in time and to observe the X-ray diffraction contrast caused by the dynamic deformation field of SAW. The X-ray topographic images showed well-resolved individual acoustic wave fronts of 6 microm SAW as well as their distortions due to SAW scattering by linear dislocations. Some of the images revealed an exceptional contrast of the concentric rings about the dislocation line, which is caused by coherent interaction of the secondary elastic waves. This contrast is similar to the Fresnel zones in optics, and this conclusion is confirmed by direct summation of secondary waves emitted by local elements of a vibrating dislocation string.  相似文献   

11.
X-ray diffraction on a langatate crystal (La3Ga5.5Ta0.5O14, LGT) modulated by a Λ=12 μm Rayleigh surface acoustic wave (SAW) was studied in a double axis X-ray diffractometer scheme at the BESSY synchrotron radiation source. SAW propagation in the crystal causes sinusoidal modulation of the crystal lattice and the appearance of diffraction satellites on the rocking curves, with their number, angular positions, and intensities depending on the wavelength and amplitude of acoustic vibrations of the crystal lattice. Strong absorption of X-ray radiation in LGT enables the observation of the diffraction spectra extinction at certain SAW amplitudes. X-ray diffraction spectra analysis makes it possible to determine SAW amplitudes and wavelengths, to measure the power flow angles, and investigate the diffraction divergence in acoustic beam in LGT.  相似文献   

12.
The effects of surface acoustic wave (SAW) on the work function of Cu, Au and Pd metal surfaces with different surface structures were studied by photoelectron emission microscopy (PEEM). SAW propagation produced bright PEEM images for Cu, Au and Pd metal surfaces consisting of high-index planes and step sites, whereas it yielded dark images for the metals exposing low-index planes, indicating that the SAW enhanced photoemission from rough metal surfaces containing coordinatively-unsaturated metal atoms and lowered that from densely packed smooth metal surfaces. Changes in the PEEM images with SAW-on and SAW-off were reversible and were associated with decreases and increases in the work function of the metal surfaces, respectively. The SAW caused periodic and vertical lattice displacement, and it was demonstrated that large lattice displacement was responsible for work function changes from coincidence between the patterns of photoemission and lattice displacement. A mechanism for work function changes is proposed on the basis of effects on the spatial structures and electronic properties of metal surfaces.  相似文献   

13.
A previously described laser ultrasonic technique known as spatially resolved acoustic spectroscopy (SRAS) can be used to image surface microstructure, using the local surface acoustic wave (SAW) velocity as a contrast mechanism. It is shown here that measuring the SAW velocity in multiple directions can be used to determine the crystallographic orientation of grains. The orientations are determined by fitting experimentally measured velocities to theoretical velocities. Using this technique the orientations of 12 nickel and 3 aluminum single crystal samples have been measured, and these are compared with x-ray Laue backreflection (LBR) measurements with good agreement. The root mean square difference between SRAS and LBR measurements in terms of an R-value is less than 4.1°. The influence of systematic errors in the SAW velocity determination due to instrument miscalibration, which affects the accurate determination of the planes, is discussed. SRAS has great potential for complementary measurements or even for replacing established orientation determination and imaging techniques.  相似文献   

14.
Bonello B  Charles C  Ganot F 《Ultrasonics》2006,44(Z1):e1259-e1263
We have studied the propagation of a surface acoustic waves (SAW), in a structure constituted by a 2D phononic film (a few micrometers thick and having lattice constants of a few hundreds of micrometers in the two directions of the propagation plane) deposited onto a homogeneous semi-infinite substrate. First, we have calculated the dispersion relations of the acoustic modes by using a plane waves expansion method. We found that the surface branch exhibits both the folding effect and a band gap for the propagation along some particular directions. This is a very interesting result which demonstrates that the effects related to the existence of the band gap (sound velocity dispersion, diffraction, refraction, ultrasound tunneling, etc.) can all appear, even if the thickness of the phononic film is much less than the penetration depth of the SAW. Then, we used an all-optical technique to monitor the spectral content of the SAW propagating along the GammaX direction in the reduced Brillouin zone. We show that a wave with frequency in the stop band, is destructively diffracted after it propagates through less than ten periods. Finally, we report on measurements of the Rayleigh wave phase velocity and we show that the transit time is independent of the distance traveled inside the phononic crystal, suggesting that tunneling trough the sample is involved.  相似文献   

15.
贾璐  阎守国  张碧星  黄娟 《应用声学》2022,41(2):278-284
针对非线性瑞利波在均匀分层半空间结构中的激发和传播规律进行研究。根据摄动理论和模态分解将分层半空间结构中瑞利波的二次谐波声场表示为二倍频瑞利波模式的线性组合,经由互易关系得到各模式的展开系数表达式。对不同分层半空间结构中瑞利波二次谐波的激发和传播特性进行讨论,结果表明相速度匹配的瑞利波模式其二次谐波分量随传播距离线性增长,非匹配模式的二次谐波分量则沿传播方向周期震荡传播。此外,文中定义非线性参数表征瑞利波模式产生的非线性程度,这有利于选择出具有明显非线性效应的匹配点,为后续检测工作提供理论依据,具有指导意义。  相似文献   

16.
A boundary kinetic effect has been predicted on the basis of a model of interaction between Rayleigh surface acoustic waves (SAW) and a gas. The effect resembles some classic boundary effects such as thermal or diffusion gas slip. The functional dependence of the effect on gas and SAW parameters is presented. The slip phenomenon takes place due to angular restrictions of the scattered gas molecules because of the deformation of the solid surface.  相似文献   

17.
Surface acoustic waves (SAW), or Rayleigh waves, bound to the surfaces of piezoelectric materials are becoming rapidly significant in electronic device applications, particularly as VHF-UHF frequency filters and versatile time-domain processors. The majority of available devices utilize either signle crystalline quartz or lithium niobate as the piezoelectric medium. This paper describes briefly the growth and critical evaluation of SAW impedance and propagation properties for certain new single crystal piezoelectric materials. Crystals discussed are Czochralski-grown bismuth germanium oxide, films of zinc oxide and aluminum nitride both epitaxially grown on single crystal sapphire, and flux-grown beryllium oxide. It is concluded that bismuth germanium oxide may prove an important cost-effective alternative to both quartz and lithium niobate, and that either zinc oxide or aluminum nitride is destined to prove invaluable in the realization of monolithic circuits such as programmable tapped delay lines, in which SAW will be interfaced with metal-oxide semiconductor (large scale integrated) technology, and active SAW elements employing functional integration.  相似文献   

18.
We present measurements of the reflection and mode conversion of surface acoustic waves (SAWs) by scanning acoustic force microscopy (SAFM). The SAFM offers a unique combination of high lateral resolution and high sensitivity towards acoustic modes of all polarizations. Since a SAW mixing experiment of two waves can be performed even if the amplitude difference between both waves is 40 dB, wavefields of extremely small amplitudes can be investigated. Using SAFM, the reflection of SAWs from a metallic wedge is investigated with submicron lateral resolution. We are able to identify two reflected wave modes, a Love and a non-coupling Rayleigh mode, by measuring their phase velocities. Received: 4 December 2000 / Accepted: 6 December 2000 / Published online: 9 February 2001  相似文献   

19.
The effect of surface roughness on adhesion and tribological properties of films and interfaces is of key importance. Therefore, it is of utmost importance to be able to measure this quantity and to predict the effects that different roughness levels may cause. Roughness affects the propagation of surface acoustic waves on a material but there is little useful quantitative data on the topic. This work investigates the dispersive effect of roughness on surface acoustic wavepackets (30-200 MHz frequency range) for different degrees of nanometer roughness on silicon (0 0 1) and (1 1 1) surfaces, we show that the roughness-induced frequency dispersion effect is significant, and that although available theories agree qualitatively with the results, the theory is not adequate to predict the real SAW dispersion. These experimental results have considerable implications for design of SAW devices, for accuracy of Brillouin spectroscopy measurements, and for possible applications to non-destructive testing of materials. Previously unknown dispersive effects on anisotropic crystal surfaces are also demonstrated.  相似文献   

20.
This paper examines the conditions for, and provides examples of, ray splitting in the reflection and refraction of surface acoustic waves (SAW) in elastically anisotropic solids at straight obstacles such as edges, surface breaking cracks, and interfaces between different solids. The concern here is not with the partial scattering of an incident SAW's energy into bulk waves, but with the occurrence of more than one SAW ray in the reflected and/or transmitted wave fields, by analogy with birefringence in optics and mode conversion of bulk elastic waves at interfaces. SAW ray splitting is dependent on the SAW slowness curve possessing concave regions, which within the constraint of wave vector conservation parallel to the obstacle allows multiple outgoing SAW modes for certain directions of incidence and orientation of obstacle. The existence of pseudo-SAW for a given surface provides a further channel for ray splitting. This paper discusses some typical material configurations for which SAW ray splitting occurs. An example is provided of mode conversion entailing backward reflection or negative refraction. Experimental demonstration of ray splitting in the reflection of a laser generated SAW in GaAs(111) is provided. The calculation of SAW mode conversion amplitudes lies outside the scope of this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号