首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In situ studies of the thermal expansion of polymorphic phases of coarse-crystalline and nanocrystalline silver sulfide, namely, monoclinic acanthite α-Ag2S and cubic argentite β-Ag2S, have been performed for the first time by high-temperature X-ray diffraction. The temperature dependences of the unit cell parameters of acanthite and argentite have been measured from temperatures in the range of 300–623 K, and the thermal expansion coefficients of acanthite and argentite have been determined. The observed difference between the thermal expansion coefficients of nano- and coarse-crystalline acanthite is shown to be due to a small size of nanocrystalline silver sulfide particles, which leads to an increase in the anharmonicity of atomic vibrations.  相似文献   

2.
The α-Ag2S acanthite–β-Ag2S argentite phase transformation in nanocrystalline silver sulfide has been studied in situ for the first time using high-temperature X-ray diffraction and scanning electron microscopy. The formation of argentite has been proved by differential thermal analysis. The acanthite–argentite transformation occurs at a temperature of ~449–450 K, and its enthalpy is ~3.7–3.9 kJ mol–1. The thermal expansion coefficients of acanthite and argentite have been estimated.  相似文献   

3.
Orientation relationships between low-temperature monoclinic semiconductor α-Ag2S acanthite and high-temperature body-centered β-Ag2S argentite are determined. It is shown that, in cubic argentite, possible distances between silver atoms are too small for the sites of the metal sublattice to be occupied by Ag atoms with probability equal to one. With regard to the possible arrangement of Ag atoms, it is shown that, during the “acanthite–argentite” transformation, the jump of a silver ion from site (e) of monoclinic acanthite to site (j) of cubic argentite is the most probable process. It is established that the acanthite–argentite transformation in Ag2S/Ag heteronanostructure is accompanied by the formation of a conductive channel of silver Ag and β-Ag2S argentite under the application of an external voltage. The on-to-off-state current ratio in the synthesized Ag2S/Ag heteronanostructure is approximately equal to 670. For the Ag2S/Ag heteronanostructure, the energy barrier for the hopping of an Ag+ ion from an atomic site of monoclinic acanthite to a site of cubic argentite is estimated.  相似文献   

4.

The thermal expansion and the heat capacity of coarse-crystalline and nanocrystalline silver sulfide Ag2S were studied by dilatometry and differential scanning calorimentry for the first time in the temperature range 290–970 K. It is found that the thermal expansion coefficient and the heat capacity of nanocrystalline silver sulfide in this temperature range are higher than those in the case of the coarse-crystalline sulfide. It is revealed that the transformation of α-Ag2S acanthite to β-Ag2S argentite and β-Ag2S argentite to γ-Ag2S phase are the first-order phase transitions; the temperatures and the enthalpies of these transformations have been determined.

  相似文献   

5.
Sadovnikov  S. I.  Gusev  A. I. 《JETP Letters》2019,109(9):584-588

An alternative model has been proposed for the phase transition from cubic argentite ß-Ag2S to monoclinic acanthite α-Ag2S in silver sulfide as a disorder–order transition. It has been shown that, as the temperature decreases below the transition temperature Ttrans, S atoms equiprobably occupying the sites of the body centered cubic (bcc) nonmetal sublattice of argentite are concentrated at four sites of the monoclinic nonmetal sublattice, whereas the other sites remain vacant. A disorder-order transition channel including three superstructure vectors of k9 and k4 stars has been determined. The distribution function of sulfur atoms in monoclinic acanthite α-Ag2S has been calculated. It has been shown that displacements of sulfur atoms distort the bcc nonmetal sublattice of argentite, forming a monoclinic lattice, where silver atoms are spaced by quite large distances and occupy their crystallographic positions with a probability of 1. The region of allowed values of the long-range order parameters η9 and η4 for the model monoclinic ordered phase α-Ag2S has been determined.

  相似文献   

6.
We propose a model of phase transformation cubic argentite–monoclinic acanthite in silver sulfide Ag2S (AgS0.5) as ordering in two argentite sublattices. We have determined the channel of the disorder–order transition including four nonequivalent superstructure vectors of stars {k9} and {k4}. For monoclinic acanthite α-Ag2S, we have calculated the distribution function for silver atoms occupying b positions in argentite, as well as the distribution function for sulfur atoms. Ordering in both sublattices is complicated by static atomic displacements. The displacement of S atoms distort the body-centered cubic (bcc) nonmetallic argentite sublattice, forming a monoclinic lattice in which silver atoms are at large distances from one another and occupy their crystallographic positions with unit probability. We have determined the range of admissible values of long-range order parameters η9 and η4 for the model monoclinic ordered α-Ag2S phase.  相似文献   

7.

The aqueous solutions of different stability containing silver sulfide (Ag2S) nanoparticles are studied. The stable, transparent, and turbid solutions have been subjected to daylight for 7 months, to ultraviolet and laser irradiation, as well as to an electron beam. Solar radiation is found to favor the Ag2S reduction to Ag and/or the formation of Ag2S/Ag hybrid nanoparticles in the solution. At a high amount of hybrid nanoparticles, the exciton–plasmon interaction causes asymmetry in the absorption spectra. The exposure of Ag2S particles precipitated from the solution with the electron beam leads to the reversible growth of Ag threads. The possible exciton–plasmon interplay mechanisms in Ag2S/Ag hybrid nanoparticles are considered. The physical mechanisms of the changing Ag2S stoichiometry, the formation of metallic Ag and Ag2S/Ag hybrid nanoparticles are the generation of hot carriers and the energy transfer (exciton–plasmon interaction) in a metal–semiconductor hybrid nanosystem are elucidated, as well.

  相似文献   

8.
The degree of charge‐transfer in Ag–4‐mercaptopyridine (Mpy) and Ag2S–4‐Mpy systems is investigated by use of surface‐enhanced Raman spectroscopy (SERS). Ag2S and Ag2Se nanoparticles are prepared on the basis of the former formation of Ag nanoparticles to make the SERS analytical objects comparable. We utilize the intensity of the non‐totally symmetric modes (either b1 or b2) as compared with the totally symmetric a1 modes to measure the degree of charge‐transfer. We find ~25% of charge‐transfer contribution for Ag–4‐Mpy, whereas 81 ~ 93% for Ag2S–4‐Mpy. It means that the charge‐transfer resonance contribution dominates the overall enhancement in SERS of Ag2S–4‐Mpy. Energy level diagram is applied to discuss the likely charge‐transfer transition between Ag, Ag2S, Ag2Se and 4‐Mpy. This article may point out the link among the three main resonance sources and could enable some insights into the electronic pathways available to the metal‐molecule and semiconductor‐molecule systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The optical properties of silver species in various oxidation and aggregation states and of tin centers in melt-quenched phosphate glasses have been assessed by optical absorption and photoluminescence (PL) spectroscopy. Glasses containing silver and tin, or either dopant, were studied. Emission and excitation spectra along with time-resolved and temperature-dependent PL measurements were employed in elucidating the different emitting centers observed and investigating on their interactions. In regard to silver, the data suggests the presence of luminescent single Ag+ ions, Ag+-Ag+ and Ag+-Ag0 pairs, and nonluminescent Ag nanoparticles (NPs), where Ag+-Ag0→Ag+-Ag+ energy transfer is indicated. Tin optical centers appear as twofold-coordinated Sn centers displaying PL around 400 nm ascribed to triplet-to-singlet electronic transitions. The optically active silver centers were observed in glasses where 8 mol% of both Ag2O and SnO, and 4 mol% of Ag2O were added. Heat treatment (HT) of the glass with the high concentration of silver and tin leads to chemical reduction of ionic silver species resulting in a large volume fraction of silver NPs and the vanishing of silver PL features. Further characterization of such heat-treated glass by transmission electron microscopy and X-ray photoelectron spectroscopy appears consistent with silver being present mainly in nonoxidized form after HT. On the other hand, HT of the glass containing only silver results in the quenching of Ag+-Ag0 pairs emission that is ascribed to nonradiative energy transfer to Ag NPs due to the positioning of the pairs near the surface of NPs during HT. In this context, an important finding is that a faster relaxation was observed for this nanocomposite in relation to a heat-treated glass containing both silver and tin (no silver pairs) as revealed by degenerate four-wave mixing spectroscopy. Such result is attributed to Ag NP→Ag+-Ag0 plasmon resonance energy transfer. The data thus indicates that energy transfer between Ag+-Ag0 pairs and NPs is bi-directional.  相似文献   

10.
Temperature properties of recombination IR luminescence (1240 nm) for ensembles of colloidal Ag2S quantum dots with an average size of 3.6 ± 0.5 nm have been investigated in gelatin. Thermostimulated luminescence, resulting from varying temperatures and at continuous photoexcitation of colloidal Ag2S quantum dots, has been detected. A peak of thermolumination has been found at the temperature region of 100–240 K, which is maintained by two components, the presence of which is by the existence of two types of hole trap states with depths of 0.07 and 0.09 eV.  相似文献   

11.
The results of studying degradation of the optical properties of colloidal Ag2S and CdS quantum dots (QDs) 2.6–3.2 nm in size passivated by thioglycolic acid (TGA) are presented. The photoluminescence intensity of colloidal Ag2S QDs has been found to decrease under laser irradiation at a wavelength of 445 nm, beginning with the effective power of 10 mW. The observed effect is interpreted as a photochemical reaction of formation of new nonradiative-recombination channels in Ag2S QDs upon excitation. It is established for colloidal CdS QDs passivated by TGA that a decrease in the optical density in the entire absorption spectrum and the luminescence intensity is accompanied by precipitation of the colloidal particles in a cell and related to photodegradation of the passivating shell.  相似文献   

12.
The EMF of the isothermal cells: Ag/AgI/AgxTiS2: 0<x<1, T=150–200°C/AgxNiPS3: 0<x<3, T=150–350°C has been measured. From the EMF-x curves the existence ranges of the 2-phase (stage I and II) regions ?0.16<x<0.32 for the Ag/AgxTiS2 system at 190°C; 0.20 < x < 0.50 and 1 < x < 2 for the Ag/AgxNiPS3 system at 400°C - have been determined. The results are sustained by X-ray diffraction and electrical conductivity measurements. From the EMF-T curves the partial enthalpy (ΔH?Ag) and entropy (ΔS?Ag) of dissolution of silver in the AgxSSE (solid solution electrode) materials were obtained. In the case of AgxTiS2, ΔH?Ag has a low absolute value, while ΔS?Ag is distinctly positive. The EMF of the Ag/AgxNiPS3 system also has a positive temperature coefficient. Furthermore, the ionic component of the thermoelectric power, ΔET, of the thermogalvanic cells: Ag/AgI/AgxSSE/AgI/Ag AgxTiS2: 0 < x < 1, T = 150–200°C( T ) (T+ΔT) AgxNiPS3: 0 < x < 1, T= 150–350°C has been measured. The kinetically important heat of transport of silver ions in the AgxSSE materials has been determined in two ways: first from the dependence of the ionic Seebeck coefficient (?Ag+) on reciprocal temperature; and second from direct calculation, using the data for ?Ag+ and ΔS?Ag. The heat of transport is much smaller than the activation enthalpy for Ag+-conduction, indicating a high ionic polaron binding energy in these materials.  相似文献   

13.
Molecular sulphur undergoes rapid dissociative chemisorption on Ag(111) with an essentially constant sticking probability of unity up to the completion of the first layer of S atoms. At this stage a (√39 R 16.1° × √39 R? 16.1°) structure is formed in which the S atom arrangement and spacing is similar to that in the (100) plane of γ-Ag2S (the high temperature form of silver sulphide). Further dosing with S2 leads to continued rapid uptake of sulphur and the appearance of a (√7 × √7) R 10.9° structure, the Auger, Δφ and thermal desorption data all indicate that fast formation of Ag2S now occurs. Very well-ordered growth of γ-Ag2S(111) is now observed, and low-temperature S2 desorption spectra appear which show that the activation energy for S2 desorption is ~175 kJ mol?1 ; this value is in excellent agreement with that observed for the enthalpy of decomposition of bulk Ag2S (2 Ag2S(s) → 4 Ag(s) + S2(g), ΔH = +179 kJmol?1). All the properties of the Ag(111)-S system imply that the material characterised by the √39 structure (i.e. the first adsorbed layer of S) is very different from bulk Ag2S. This is discussed and compared with the results of other studies on metal-sulphur systems.  相似文献   

14.
This paper reported a one-step synthesis of Ag2S/Ag@MoS2 nanocomposites and its applications in the surface-enhanced Raman scattering (SERS) detection and photocatalytic degradation of organic pollutants. The nanocomposites were well characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammograms (CV), the Brunauer-Emmett-Teller (BET), and Fourier transforms infrared spectra (FTIR). The AgNPs were uniformly dispersed on the MoS2 nanosheets and the particle size of the AgNPs was about 10–30 nm. These Ag2S/Ag@MoS2 nanocomposites offered sensitive SERS signals for the detection of R6G with the limit of detections as low as 10?10 M. The photocatalytic activity of the composite catalyst was studied by the degradation of methylene blue (MB) dye under light illumination. The apparent rate constant of MB degradation for the obtained catalyst could reach 6.6?×?10?2 min?1, indicating that the novel Ag2S/Ag@MoS2 nanocomposites can be explored for organic pollutant’s detection and degradation.
Graphical abstract One-step synthesis of Ag2S/Ag@MoS2 nanocomposites for SERS and photocatalytic applications
  相似文献   

15.
Here, we report the synthesis and characterization of CoFe2O4 doping Ag2S dendrimer-modified nanoparticles (CoFe2O4-Ag2S DMNs) in Cry1Ab protein detection and imaging. The near-infrared Ag2S quantum dots were first prepared by using the thermal decomposition method, followed by modification of the water-soluble quantum dots using the method of solvent evaporation and ligand exchange, and finally the fluorescent magnetic bifunctional nanoparticles were obtained by binding with CoFe2O4. As-prepared CoFe2O4-Ag2S DMNs were characterized by fluorescence (FL) spectroscopy and transmission electron microscopy (TEM). Results showed that Ag2S DMNs could sensitively detect Cry1Ab both in vitro and in vivo. In vitro, the enhanced FL intensity as a function of the concentration is notably consistent with the Langmuir binding isotherm equation in the range of 0–200 ng/mL of Cry1Ab proteins. The detection limit of this method was found to be 0.2 ng/mL. Meanwhile, the fluorescence wavelength was extended to the second near-infrared range (NIR-II, 1.0~1.4 μm), which enables in vivo imaging. This study highlights the importance of NIR QDs doping magnetic materials as a new method to trace Bacillus thuringiensis (Bt) in insects and their potential applications in in vivo NIR tissue imaging.  相似文献   

16.
Sadovnikov  S. I.  Gusev  A. I. 《JETP Letters》2021,114(3):156-162
JETP Letters - The relative position of atomic planes of low-temperature monoclinic acanthite α-Ag2S and high-temperature bcc argentite β-Ag2S has been determined from X-ray and electron...  相似文献   

17.
Reflectivity measurements in the far infrared and infrared (20–1500 cm?1) of polycristalline β-Ag2S at 4.2, 62 and 300K and of α-Ag2S at 473K are presented. The observed phonon structure of β-Ag2S is discussed. The reflectance of α-Ag2S is high in the far infrared and shows a plasma edge near 1000 cm?1. The optical constants of α-Ag2S as calculated with a Kramers-Kronig analysis are compared with the predictions of the Drude theory.  相似文献   

18.
The composition of volatile and solid products of oxidation of hydrogen sulfide and stainless steel in gas mixtures containing H2S, O2, H2O, and CO2 has been determined using mass spectrometry, x-ray diffraction analysis, and scanning electron microscopy. It has been shown that holding an H2S–O2 mixture at 301 K results in prevailing formation of elemental sulfur and iron sulfides in the form of porous hygroscopic crust on the reactor wall surface. Formation of gas-phase sulfur causes self-acceleration of the oxidation of hydrogen sulfide; the resulting water triggers corrosion of the reactor wall. Heating of the resulting sulfur-sulfide crust in O2 medium is accompanied by formation of SO2 and heat release at T > 508 K. After heating of the H2S–CO2 mixture to 615 K, H2 and COS were found in the volatile reactants; no noticeable corrosion of the reactor wall has been detected. It has been established that addition of O2 to the H2S–CO2 mixture and its heating to 673 K leads to formation of ferrous sulfates. The mechanisms of the observed processes are discussed.  相似文献   

19.
The study of electronic and electrogalvanic properties of α silver sulphide has been performed on samples whose non-stoichiometry is controlled by annealing under sulphur pressure or by coulometric titration with the cell Ag/AgI/Ag2+εS/Pt.The data obtained lead to the adoption of an electronic model according to which the Frenkel defects are completly ionised. The homogeneity range has been drawn between 193° and 550°C. It extends to both sides of the stoichiometric composition.  相似文献   

20.
N. Nouiri  K. Jaouadi  T. Mhiri  N. Zouari 《Ionics》2016,22(9):1611-1623
Synthesis and structural characterization by single-crystal X-ray diffraction method, thermal behavior, and electrical proprieties are given for a new compound with a superprotonic phase transition Cs2(HSO4)(H2AsO4). The title compound crystallizes in the monoclinic system with the P21/n space group. The structure contains zigzag chains of hydrogen-bonded anion tetrahedra that extend in the [010] direction. Each tetrahedron is additionally linked to a tetrahedron neighboring chain to give a planar structure with hydrogen-bonded sheets lying parallel to (10ī). The existence of O–H and (S/As)–O bonds in the structure at room temperature has been confirmed by IR and Raman spectroscopy in the frequency ranges 4000–400 cm?1and 1200–50 cm?1, respectively. Differential scanning calorimetry analysis of the superprotonic transition in Cs2(HSO4)(H2AsO4) showed that the transformation to high temperature phase occurs at 417 K by one-step process. Thermal decomposition of the product takes place at much higher temperatures, with an onset of approximately 534 K. The superprotonic transition was also studied by impedance and modulus spectroscopy techniques. The conductivity in the high temperature phase at 423 K is 1.58 × 10?4 Ω?1 cm?1, and the activation energy for the proton transport is 0.28 eV. The conductivity relaxation parameters associated with the high disorder protonic conduction have been examined from analysis of the M”/M”max spectrum measured in a wide temperature range. Transport properties of this material appear to be due to the proton hopping mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号