首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The analytic solution of the problem of vibrations of an ice sheet with a rectilinear crack floating on the surface of an ideal incompressible fluid of shallow depth under the action of a local zone of the time-periodic pressure is obtained. The ice sheet is simulated by two thin viscoelastic semiinfinite plates of different thickness. Various conditions on the crack edges are considered. Far field asymptotics are investigated and it is revealed that the predominant directions of wave propagation at an angle to the crack can be distinguished in the far field in the case of contact of two plates of different thickness. In the case of contact of identical plates, a waveguide mode propagating along the crack is excited. It is shown that the waveguide mode is the same for the plates with the free edges and the free overlap since the part of the solution symmetric about the crack is the same while the difference between the solutions is caused by the antisymmetric part of the solution.  相似文献   

2.
This paper deals with the stress state of a box-shaped shell formed by two semi-infinite plates joined at a right angle. The plates are homogeneous but have different thicknesses. The shell is weakened by a finite rectilinear crack of unit length which reaches one edge of the shell. The orientation of the crack and the load on its edges are arbitrarily chosen. The problem is solved with the assumption that the thickness of the plates is small compared to the length of the crack, which allows an asymptotic formulation of the problem. The problem is reduced to a special type of Riemannian vector problem in which the stress-intensity factor allows matrix factorization in accordance with Khrapkov’s scheme. The asymptotes of the resulting solution and the stress-intensity factor are examined in relation to the thickness of the shell and the angle formed by the crack and the edge of the shell. Translated from Prikladnaya Mekalinika, Vol. 34, No. 12, pp. 48–54, December, 1998.  相似文献   

3.
针对非均匀Winkler弹性地基上变厚度矩形板的自由振动问题,通过一种有效的数值求解方法——微分变换法(DTM),研究其无量纲固有频率特性。已知变厚度矩形板对边为简支边界条件,其他两边的边界条件为简支、固定或自由任意组合。采用DTM将非均匀Winkler弹性地基上变厚度矩形板无量纲化的自由振动控制微分方程及其边界条件变换为等价的代数方程,得到含有无量纲固有频率的特征方程。数值结果退化为均匀Winker弹性地基上矩形板以及变厚度矩形板的情形,并与已有文献采用的不同求解方法进行比较,结果表明,DTM具有非常高的精度和很强的适用性。最后,在不同边界条件下分析地基变化参数、厚度变化参数和长宽比对矩形板无量纲固有频率的影响,并给出了非均匀Winkler弹性地基上对边简支对边固定变厚度矩形板的前六阶振型。  相似文献   

4.
The effects of a transient thermal load on a cracked plate are studied experimentally using photothermoelasticity. The three crack configurations of an edge crack, an interior vertical crack and an interior crack inclined at 45 deg are analyzed. In each case, the initially heated plates are subjected to cooling along the edge, while the faces of the plate are either completely insulated, or noninsulated, or in a third case, they are covered with heated transparent Plexiglas plates. It is shown that among the three cracks, the largest transient maximum stress-intensity factor occurs for the edge crack. The inclined crack is subjected to a mixed-mode loading. Among the three cooling conditions, the most severe is the insulated faces case while the noninsulated is the least severe. The relative effect of the cooling conditions on the stress-intensity factors for the three crack types is different enough that the results with one cooling condition would not represent those of another one. A comparison of the experimental transient stress-intensity factors for the vertical crack cases to the finite-element results shows good agreement.  相似文献   

5.
弹性波与单侧界裂纹相互作用问题的边界元法   总被引:1,自引:0,他引:1  
盖秉政  陈清才 《力学学报》2000,32(3):334-342
措助边界元法设计了一种迭代修正方法来求解单侧界面裂纹模型与弹性波的相互作用问题,作为对算法的检验,用这种方法我们具体地分析了平面简谐弹性波对一个则界面裂纹的入射,给出了裂纹面的接触形态及应力场。  相似文献   

6.
This study focuses on the stress intensity factors for free edges in multi-layered structural components. The effects of elastic constants of various material combinations on the weak singularity at free edges are analyzed. Using the H-integral approach, the effects of elastic mismatch parameters, the bond area and the thickness of the thin metal layer on the stress intensity factor are quantified and the results are compared with detailed finite element solutions. A good agreement between numerical predictions obtained from the H-integral and the detailed FE results is achieved, showing the applicability of this approach. Similar to a crack problem, the singular elastic field dominates in an annular region adjacent to the notch tip. The relationship between the valid range of the K-dominated field and the thin-film thickness is then demonstrated. Furthermore, the competition of crack initiation between the free edge interface (180° opening angle) and a 90° notch interface in a generic specimen is investigated, in order to find out which is the prevailing failure mode. Comparison between isotropic Si and anisotropic Si substrate is also illustrated. Anisotropy of the Si substrate has a significant influence on the stress intensity factor when combined with an Au or Al metal layer but not with a Cu layer. Additionally, standardized numerical formulae of the dimensionless stress intensity factor have been derived to guide the engineering application.  相似文献   

7.
The physical occurrence that crack surfaces are in contact at the compressive edges when a flat or a shell is subjected to a bending load has been recognized. This article presents a theoretical analysis of crack–face contact effect on the stress intensity factor of various shell structures such as spherical shell, cylindrical shell containing an axial crack, cylindrical shell containing a circumferential crack and shell with two non-zero curvatures, under a bending load. The formulation of the problem is based on the shear deformation theory, incorporating crack–face contact by introducing distributed force at the compressive edge. Material orthotropy is concerned in this analysis. Three-dimensional finite element analysis (FEA) is conduced to compare with the theoretical solution. It is found that due to curvature effect crack–face contact behavior in shells differs from that in flat plates, in that partial contact of crack surfaces may occur in shells, depending on the shell curvature and the nature of the bending load. Crack–face contact has significant influence on the stress intensity factor and it increases the membrane component but decreases the bending component.  相似文献   

8.
The mode I stress intensity factor for a small edge crack in an elastic half-space is found when the space is in contact with two stratified fluids of different temperatures, the boundary between the fluids oscillating sinusoidally over the solid surface. The variation in the stress intensity factor, which may lead to thermal fatigue crack growth, is examined as a function of time, crack depth, amplitude and temporal frequency of oscillation, surface heat transfer coefficient and material properties of the half-space. It is shown how this ‘boundary layer’ solution may be applied to problems involving finite geometries.  相似文献   

9.
Antiplane shear deformation of several edge-cracked geometries is considered. Analytical expressions are derived for the mode III stress intensity factor (SIF) of circular shafts with edge cracks, bonded half planes containing an interfacial edge crack, bonded wedges with an interfacial edge crack and also DCB’s. The results are extracted for simple isotropic materials as well as anisotropic materials and also bonded dissimilar materials and it is shown that the same expressions are obtained for the SIF under the same geometries but with different above-mentioned material properties. Different boundary conditions are assumed and the SIF relations are derived in each case. As the special cases, the SIF’s of the two bonded quarter planes containing an edge crack at the interface and infinite strip with a semi-infinite edge crack are extracted which coincide with the results cited in the literature.  相似文献   

10.
A mode III fracture problem of edge cracks originating from a circular hole in an infinite piezoelectric solid is studied based on complex variable method combined with the method of conformal mapping. Explicit and exact expressions for the complex potentials, field intensity factors and energy release rates are presented under the assumption that the surface of the cracks and hole is electrically impermeable. Numerical analysis is then conducted to discuss the influences of crack length and applied mechanical/electric loads on the field intensity factors and energy release rate for one and two edge cracks, respectively. It is found that for the case of a single edge crack, the field intensity factors are greater than those of double edge cracks, and moreover the electric loads can either promote or retard crack growth, depending on the magnitude and direction of the applied electric loads.  相似文献   

11.
The double plate system with a discontinuity in the elastic bonding layer of Winker type is studied in this paper. When the discontinuity is small, it can be taken as an interface crack between the bi-materials or two bodies (plates or beams). By comparison between the number of multifrequencies of analytical solutions of the double plate system free transversal vibrations for the case when the system is with and without discontinuity in elastic layer we obtain a theory for experimental vibration method for identification of the presence of an interface crack in the double plate system. The analytical analysis of free transversal vibrations of an elastically connected double plate systems with discontinuity in the elastic layer of Winkler type is presented. The analytical solutions of the coupled partial differential equations for dynamical free and forced vibration processes are obtained by using method of Bernoulli’s particular integral and Lagrange’s method of variation constants. It is shown that one mode vibration corresponds an infinite or finite multi-frequency regime for free and forced vibrations induced by initial conditions and one-frequency or corresponding number of multi-frequency regime depending on external excitations. It is shown for every shape of vibrations. The analytical solutions show that the discontinuity affects the appearance of multi-frequency regime of time function corresponding to one eigen amplitude function of one mode, and also that time functions of different vibration basic modes are coupled. From final expression we can separate the new generalized eigen amplitude functions with corresponding time eigen functions of one frequency and multi-frequency regime of vibrations. The English text was polished by Keren Wang.  相似文献   

12.
This paper describes a method for free vibration analysis of rectangular plates with any thicknesses, which range from thin, moderately thick to very thick plates. It utilises admissible functions comprising the Chebyshev polynomials multiplied by a boundary function. The analysis is based on a linear, small-strain, three-dimensional elasticity theory. The proposed technique yields very accurate natural frequencies and mode shapes of rectangular plates with arbitrary boundary conditions. A very simple and general programme has been compiled for the purpose. For a plate with geometric symmetry, the vibration modes can be classified into symmetric and antisymmetric ones in that direction. In such a case, the computational cost can be greatly reduced while maintaining the same level of accuracy. Convergence studies and comparison have been carried out taking square plates with four simply-supported edges as examples. It is shown that the present method enables rapid convergence, stable numerical operation and very high computational accuracy. Parametric investigations on the vibration behaviour of rectangular plates with four clamped edges have also been performed in detail, with respect to different thickness-side ratios, aspect ratios and Poisson’s ratios. These results may serve as benchmark solutions for validating approximate two-dimensional theories and new computational techniques in future.  相似文献   

13.
The direct separation of variables is used to obtain the closed-form solutions for the free vibrations of rectangular Mindlin plates. Three different characteristic equations are derived by using three different methods. It is found that the deflection can be expressed by means of the four characteristic roots and the two rotations should be expressed by all the six characteristic roots,which is the particularity of Mindlin plate theory. And the closed-form solutions,which satisfy two of the three governing equations and all boundary conditions and are accurate for rectangular plates with moderate thickness,are derived for any combinations of simply supported and clamped edges. The free edges can also be dealt with if the other pair of opposite edges is simply supported. The present results agree well with results published previously by other methods for different aspect ratios and relative thickness.  相似文献   

14.
陈英杰  吕婷婷  王超  崔鹏 《力学季刊》2020,41(3):571-581
本文在Reissner理论基础上,应用功的互等定理推导了夹层矩形板稳定问题的基本解,在已推导出的夹层板基本解的基础上,利用功的互等法求解了两对边固定一边简支一边自由、两邻边简支另两邻边自由且角点支承、两邻边简支另两邻边自由且角点悬空三种不同边界条件下夹层板的稳定问题,给出了挠曲面方程及其对应的执行方程;进行了数值计算,并与有限元结果进行对照分析.结果表明:本文方法求解过程更简单,提供了一种求解夹层板稳定问题的新方法,计算结果对解决工程实际问题具有一定的参考价值.  相似文献   

15.
The exact solution of the bending of a thick rectangular plate with three clamped edges and one free edge under a uniform transverse load is obtained by means of the concept of generalized simply-supported boundary[1] in Reissner’s theory of thick plates. The effect of the thickness h of a plate on the bending is studied and the applicable range of Kirchhoffs theory for bending of thin plates is considered.  相似文献   

16.
All possible exact solutions are successfully obtained for the first time in terms of 10 sets of distinct eigensolutions for the free in-plane vibration of orthotropic rectangular plates when two opposite plate edges are either type of simple support, the other two edges are any combination of classical edge conditions. The exact solutions are validated through both mathematical proof and comparisons with the solutions of differential quadrature method. Some unusual phenomena are revealed in free in-plane vibrations of rectangular plates due to one of the eigenvalues being zero. This work constitutes a natural extension of very recent corresponding work for isotropic rectangular plates by the same authors. Moreover, this work substantially simplified both solution forms and solving procedure of the early work. It is expected that results tabulated here can serve as the benchmarks for the validation of the numerical methods.  相似文献   

17.
ABSTRACT

Considerable information is available in the published literature on the free vibration frequencies and mode shapes of rectangular flat plates having two adjacent edges clamped and the other two free. However, no results appear to have been published previously for shallow shells having such edge conditions. The present work uses the Ritz method with displacement components in the form of algebraic polynomials to obtain accurate frequencies. Frequencies are determined for the first eight modes of shallow shells having spherical, cylindrical, and hyperbolic paraboloi-dal curvatures and square planforms. Beginning with the plate, the curvatures are incrementally increased in each case to the limits of shallow  相似文献   

18.
本文采用胡海昌教授提出的厚板方程,并用作者所提出的滑支边和广义滑支边的概念,再加上广义简支边的概念,用叠加法求解两邻边自由另两边任意支撑的矩形厚板静力问题一般解。  相似文献   

19.
The idea, first used by the author for the case of crack problems, is applied here to solve a contact problem for a transversely isotropic elastic layer resting on a smooth elastic half-space, made of a different transversely isotropic material. A rigid punch of arbitrary shape is pressed against the layer’s free surface. The governing integral equation is derived; it is mathematically equivalent to that of an electrostatic problem of an infinite row of coaxial charged disks in the shape of the domain of contact. The case of circular domain of contact is considered in detail. As a comparison, the method of integral transforms is also used to solve the problem. The main difference of our integral transform approach with the existing ones is in separating of our half-space solution from the integral transform terms. It is shown that both methods lead to the same results, thus giving a new interpretation to the integral transform as a sum of an infinite series of generalized images.  相似文献   

20.
The problem of thermoelastic edge-cracking in two-layered bimaterial systems subjected to convective heating is considered. The medium is assumed to be insulated on one surface and exposed to sudden convective heating on another surface containing the edge crack. It is known that, when a bimaterial system’s surface is heated, compressive stresses arise near the heating surface, forcing the crack surfaces together over a certain cusp-shaped contact length. It is also known that, for a cooled bimaterial systems surface, tensile stresses take place close to the cooling surface and tend to open the crack. So, the edge cracked heating surface problem is treated as an embedded crack with a smooth closure condition of the crack surfaces, with the crack contact length being an additional unknown variable. Superposition and uncoupled quasi-static thermoelasticity principles are adopted to formulate the problem. By using a Fourier integral transform technique, the mixed boundary value problem is reduced to a Cauchy type singular integral equation with an unknown function as the derivative of the crack surface displacement. The numerical results of the stress intensity factors for an edge crack and a crack terminating at the interface, are calculated and presented as a function of time, crack length, heat transfer coefficient, and thickness ratio for two different bimaterial systems, namely a stainless steel layer welded on ferritic steel and a ceramic layer coating on ferritic steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号