首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 889 毫秒
1.
The galvanomagnetic and magnetic properties of EuB6 single crystal have been measured over wide temperature (1.8–300 K) and magnetic-field (up to 70 kOe) ranges, and the parameters of charge carriers and the characteristics of the magnetic subsystem are estimated in the paramagnetic and ferromagnetic (T < T C ≈ 13.9 K) phases of this compound with strong electron correlations. In the temperature range T < T* ≈ 80 K, a magnetoresistance hysteresis Δρ(H)/ρ(0) is detected; it reaches a maximum amplitude of about 5% at T ≈ 12 K. The anomalies of charge transport observed in the temperature range T C < T < T* are shown to be related to the magnetic scattering of charge carriers (m eff = (15–30)m 0, where m 0 is the free-electron mass) that results from a short-range magnetic order appearing upon the formation of ferromagnetic nanoregions (ferrons).  相似文献   

2.
High-precision measurements of thermopower have been performed in a wide temperature range (2–300 K) for a series of cerium-based heavy-fermion compounds, including CeB6, CeAl3, CeCu6, and substitutional solid solutions of the CeCu6 ? x Au x system (x = 0.1, 0.2). All compounds exhibit an unusual (logarithmic) asymptotic behavior of the temperature dependence of the Seebeck coefficient: S ∝ ?lnT. In the case of cerium hexaboride, this anomalous behavior of S(T) is accompanied by the appearance of weak-carrier-localization-mode asymptotics in the conductivity (σ(T) ∝ T 0.39), while the paramagnetic susceptibility χ(T) and the effective mass of charge carriers m eff(T) vary according to a power law (χ(T), m eff(T) ∝ T ?0.8) in the temperature interval T = 10–80 K. This behavior corresponds to renormalization of the density of states at the Fermi level. The observed anomalous behavior of thermopower in CeB6 and other cerium-based intermetallic compounds is attributed to the formation of heavy fermions (many-body states in the metal matrix) at low temperatures.  相似文献   

3.
The behavior of the magnetization M and the magnetic susceptibility χ is theoretically analyzed for ferromagnets at the temperature T=T m corresponding to the maximum of the function χ(T). Four new methods of determining the Curie temperature TC with the use of the derived relationships are proposed. One of these methods is based on the relationship χ(T m ) =21/3χ(TC) (the 21/3 rule). The results are applied for processing experimental data obtained for lanthanum manganite of composition La0.85Sr0.15MnO3.  相似文献   

4.
Temperature m(T) and time m(t) dependences of the magnetic moment of GaMnSb thin films with MnSb clusters have been measured. The m(t) dependences are straightened in semilogarithmic coordinates m(lnt). The temperature dependences of magnetic viscosity S(T) corresponding to the slope of straight lines m(lnt) have been studied. It have been demonstrated that the behavior of dependences S(T) is governed by the lognormal distribution of the magnetic anisotropy energy of MnSb clusters. It have been found that the behavior of dependences m(T) measured after the films were cooled in zero magnetic field and in magnetic field H = 10 kOe is also governed by the lognormal distribution of the magnetic anisotropy energy of MnSb clusters.  相似文献   

5.
We investigate the linear thermoelectric response of an interacting quantum dot side-coupled by one of two Majorana modes hosted by a topological superconducting wire. We employ the numerical renormalization group technique to obtain the thermoelectrical conductance L in the Kondo regime while the background temperature T, the Majorana-dot coupling Γ m , and the overlap ε m between the two Majorana modes are tuned. We distinguish two transport regimes in which L displays different features: the weak- (Γ m <T K ) and strong-coupling (Γ m >T K ) regimes, where T K is the Kondo temperature. For an infinitely long nanowire where the Majorana modes do not overlap (ε m = 0), the thermoelectrical conductance in the weak-coupling regime exhibits a peak at T ~ Γ m <T K . This peak is ascribed to the anti-Fano resonance between the asymmetric Kondo resonance and the zero-energy Majorana bound state. In the strong-coupling regime, on the other hand, the Kondo-induced peak in L is affected by the induced Zeeman splitting in the dot. For finite but small overlap (0 <ε m <Γ m ), the interference between the two Majorana modes restores the Kondo effect in a smaller energy scale Γ′ m and gives rise to an additional peak in Γ ~ Γ′ m, whose sign is opposite to that at T ~ Γ m . In the strong-coupling regime this additional peak can cause a non-monotonic behavior of L with respect to the dot gate. Finally, in order to identify the fingerprint of Majorana physics, we compare the Majorana case with its counterpart in which the Majorana bound states are replaced by a (spin-polarized) ordinary bound state and find that the thermoelectric features for finite ε m are the genuine effect of the Majorana physics.  相似文献   

6.
The study of galvanomagnetic, magnetic, and magnetooptical characteristics of iron monosilicide in a wide range of temperatures (1.8–40 K) and magnetic fields (up to 120 kOe) has revealed the origin of the low-temperature sign reversal of the Hall coefficient in FeSi. It is shown that this effect is associated with an increase in the amplitude of the anomalous component of the Hall resistance ρH (the amplitude increases by more than five orders of magnitude with decreasing temperature in the range 1.8–20 K). The emergence of the anomalous contribution to ρH is attributed to the transition from the spin-polaron to coherent regime of electron density fluctuations in the vicinity of Fe centers and to the formation of nanosize ferromagnetic regions, i.e., ferrons (about 10 Å in diameter), in the FeSi matrix at T<TC=15 K. An additional contribution to the Hall effect, which is observed near the temperature of sign reversal of ρH and is manifested as the second harmonic in the angular dependences ρH(?), cannot be explained in the framework of traditional phenomenological models. Analysis of magnetoresistance of FeSi in the spin-polaron and coherent spin fluctuation modes shows that the sign reversal of the ratio Δρ(H)/ρ accompanied by a transition from a positive (Δρ /ρ>0, T>Tm) to a negative (Δρ/ρ<0, T<Tm) magnetoresistance is observed in the immediate vicinity of the mictomagnetic phase boundary at Tm=7 K. The linear asymptotic form of the negative magnetoresistance Δρ/ρ ∝?H in weak magnetic fields up to 10 kOe is explained by the formation of magnetic nanoclusters from interacting ferrons in the mictomagnetic phase of FeSi at T<Tm. The results are used for constructing for the first time the low-temperature magnetic phase diagram of FeSi. The effects of exchange enhancement are estimated quantitatively and the effective parameters characterizing the electron subsystem in the paramagnetic (T>TC), ferromagnetic (Tm<T< TC), and mictomagnetic (T<Tm) phases are determined. Analysis of anomalies in the aggregate of transport, magnetic, and magnetooptical characteristics observed in the vicinity of Hm≈35 kOe at T<Tm leads to the conclusion that a new collinear magnetic phase with MH exists on the low-temperature phase diagram of iron monosilicide.  相似文献   

7.
Temperature dependences of dielectric permittivity in the improper ferroelastic phase, including the region of the improper ferroelastic phase transition occurring at T=Tc1, were studied in the betaine phosphite-betaine phosphate solid-solution crystals. At a betaine phosphate (BP) concentration of 10%, the phase transition temperature Tc1 was found to shift toward higher temperatures by about 5 K compared to betaine phosphite (BPI) crystals, where Tc1=355 K. The phase transition remains in the vicinity of the tricritical point. As the BP concentration in BPI is increased, the dielectric anomaly at T=Tc1 weakens substantially compared to pure BPI. The nonlinear temperature dependence of reciprocal dielectric permittivity in the improper ferroelastic phase of BPIxBP1?x crystals is described in the concentration region 0.9≤x≤1 in terms of a thermodynamic model taking into account the biquadratic relation of the nonpolar order parameter of the improper ferroelastic phase transition to polarization. The decrease in the ferroelectric phase transition temperature Tc1 (or in the temperature of loss of improper ferroelastic phase stability) with increasing BP concentration in the above limits is due to the decreasing effect of the nonpolar mode on the polar instability, which is accompanied by a weakening of the dielectric anomaly at T=Tc1  相似文献   

8.
The effect of heating and cooling rates on melting (Tm) and crystallization (Tc) temperatures of metal nanoclusters is investigated in terms of the isothermal molecular dynamics. We report on the results obtained for nickel nanoclusters, although analogous results were also obtained for gold and aluminum nanoclusters. It is found that Tm increases, while Tc decreases with increasing heating and cooling rates, both Tm and Tc tending to the same value for heating and cooling rates tending to zero. The results indicate that the hysteresis of melting and crystallization of nanoparticles must be completely due to nonequilibrium conditions of heating and cooling. The transition of Ni nanoclusters to the amorphous state begins at very high cooling rates exceeding 10 TK/s.  相似文献   

9.
Oscillations in the superconducting transition temperature ΔT c (P), in the critical magnetic field ΔH c (P), in the thermopower α / T (T 2), and in electrical resistivity ρ(T) (P is pressure) of Mo1?x -Re x alloys are observed at low temperatures against the background of specific features related to an electronic-topological transition (ETT) in these alloys. The oscillations are sensitive to the impurity concentration: they increase when the Re impurity concentration is close to the critical concentration C c at which the ETT occurs. Oscillations are also detected in the concentration dependences of the temperature coefficient of resistivity (?ρ / ?T (C)) and the thermopower derivative (?(α/T) / ?T 2 (C)) of Mo1?x -Re x alloys at low temperatures. The former and latter oscillations are shown to correlate with each other. These specific features are assumed to result from the ETT and to be related to the localization of the part of the electrons that fill a new cavity in the Fermi surface during this transition.  相似文献   

10.
The Influence of temperature in the range from 275 to 320 K on ESR spectra and magnetization m of ensembles of spherical gadolinium nanoparticles with the diameter from 89 to 18 nm was studied. The particles with d = 18 nm had a cubic face centered structure and no magnetic transition. At T > TC all particles were paramagnetic, and their g factors were g = 1.98 ± 0.02 irrespective of their size and structure. At T = TC the particles having 28 to 89 nm in size experienced a magnetic and orientation transition; at T < TC their m(H) dependences were described by the Langevin function, and the FMR lines broadened and shifted towards H = 0. FMR lines of the Gd particle ensembles showed a hysteresis behavior during magnetization reversal, which did not correlate with the coercivity of the particles. Dependences of the Gd nanoparticles FMR linewidth ΔH(T) changed proportionally to |TTC|.  相似文献   

11.
A number of solid solutions Bi7Ti4 + x W x Ta1–2x O21 (x = 0–0.5) have been synthesized from oxides by solid-phase reaction. The crystal structure, the electrophysical characteristics, and the microstructure of the prepared ceramic samples have been studied. According to X-ray powder diffraction, all the compounds are single-phase with the structure of mixed-layer Aurivillius phases (m = 2.5) with the orthorhombic crystal lattice (space group I2cm, Z = 2). Temperature dependences of the relative permittivity ε(T) of the compound have been measured, from which it has been found that the Curie temperature T C of perovskite-like oxides Bi7Ti4 + x W x Ta1–2x O21 (x = 0–0.5) decreases linearly as substitution parameter x decreases. The activation energies of charge carriers have been found in different temperature ranges.  相似文献   

12.
The penetration of a magnetic flux into a type-II high-T c superconductor occupying the half-space x > 0 is considered. At the superconductor surface, the magnetic field amplitude increases in accordance with the law b(0, t) = b 0(1 + t)m (in dimensionless coordinates), where m > 0. The velocity of penetration of vortices is determined in the regime of thermally activated magnetic flux flow: v = v 0exp?ub;?(U 0/T )(1-b?b/?x)?ub;, where U 0 is the effective pinning energy and T is the thermal energy of excited vortex filaments (or their bundles). magnetic flux “Giant” creep (for which U 0/T? 1) is considered. The model Navier-Stokes equation is derived with nonlinear “viscosity” vU 0/T and convection velocity v f ∝ (1 ? U 0/T). It is shown that motion of vortices is of the diffusion type for j → 0 (j is the current density). For finite current densities 0 < j < j c, magnetic flux convection takes place, leading to an increase in the amplitude and depth of penetration of the magnetic field into the superconductor. It is shown that the solution to the model equation is finite at each instant (i.e., the magnetic flux penetrates to a finite depth). The penetration depth x eff A (t) ∝ (1 + t)(1 + m/2)/2 of the magnetic field in the superconductor and the velocity of the wavefront, which increases linearly in exponent m, exponentially in temperature T, and decreases upon an increase in the effective pinning barrier, are determined. A distinguishing feature of the solutions is their self-similarity; i.e., dissipative magnetic structures emerging in the case of giant creep are invariant to transformations b(x, t) = βm b(t/β, x(1 + m/2)/2), where β > 0.  相似文献   

13.
The spin-selective photokinetics of a single matrix-isolated impurity molecule with a triplet-triplet optical transition, T 0T 1, is considered and the manifestations of the photokinetics in the fluorescence excitation spectra and intensity autocorrelation functions g (2)(τ) of the molecule undergoing narrow-band optical excitation is studied to resolve the fine structure of the transition. The rates of intersystem crossings (ISCs) T 1ST 0 to and from a nonradiating singlet state S of the molecule and the rate of population relaxation among the ground (T 0) state sublevels can be obtained from the spectra and g (2)(τ) using the analytical expressions obtained. New experiments on an individual NV defect center in nanocrystals of diamond, where, for the first time, the fine structure of its triplet-triplet 3 A-3 E zero-phonon optical transition (~637 nm) at 1.4 K was resolved, are interpreted. It is concluded that the rate of the ISC transition from the m S =0 sublevel of the excited 3 E state to the singlet 1 A state (~1 kHz) is much slower than the rates from the m S =±1 substates, while the rates of ISC transitions to different m S substates of the ground 3 A state are close to each other (~1 Hz). As a result, only the optical transition between m S =0 sublevels in the 3 A-3 E manifold contributes strongly to the fluorescence. The experimentally observed double-exponential decay of the g (2)(τ) function is explained by the two pathways available to the center for it to leave the S state: (i) the ST 0(m S )=0) transition and (ii) the ST 0(m S =±1) transitions followed by the slow spin-lattice relaxation T 0(m S =±1)→T 0(m S =0) (rate ~0.1 Hz). The work is important for studies where the NV center is used as a single photon source or for quantum information processing.  相似文献   

14.
The thermopower, S, magnetothermopower, ΔS/S, resistivity, ρ, and magnetoresistivity, Δρ/ρ, depending on the temperature T and magnetic field H, have been studied in an Nd0.5Sr0.5MnO3 single crystal consisting of three types of clusters: an antiferromagnetic CE-type with charge-orbital ordering (below the Neel temperature TNCE ~ 145 K) and an A-type with TNA ~ 220 K; a ferromagnetic at 234 ≤ T ≤ 252 K, and a ferromagnetic metal phase below the Curie temperature TC = 248 K. The thermopower was found to be negative, indicating the dominance of the electronic type of conductivity. In the S(T) curves, a sharp minimum is observed in the temperature range of 100 K ≤ T ≤ 133 K, close to TNCE, where the absolute S value attains 53 μV/K. With a further increase in temperature, the absolute S value decreases rapidly; at 200 K it is equal to 7 μV/K. It then slightly increases, reaching its maximum value of 15 μV/K at a temperature of 254 K, which is close to TC. The absolute thermopower decreased under the influence of the magnetic field; i.e., a negative magnetothermopower occurs. In {ΔS/S}(T) curves, a sharp minimum is observed at T = 130 K close to TNCE, where the magnetothermopower reaches a huge value of ~45% at H = 13.23 kOe. A broad minimum in the {ΔS/S}(T) curves is observed near the Curie temperature and its value is also high, viz., ~15% in the maximum measuring magnetic field of 13.23 kOe. The extremely high magnetothermopower values mean that the charge-orbital ordered nanoclusters or ferron type make the main contribution to the thermopower of the entire sample. The behavior of the ρ(T) and {Δρ/ρ}(T) curves is similar to that of the S(T) and {ΔS/S}(T) dependencies, which is in agreement with this conclusion.  相似文献   

15.
The effect of neutron-bombardment-induced atomic disorder on the galvanomagnetic properties of Sr2RuO4 single crystals has been experimentally studied in a broad range of temperatures (1.7–380 K) and magnetic fields (up to 13.6 T). The disorder leads to the appearance of negative temperature coefficients for both the in-plane electric resistivity (ρa) and that along the c axis (ρc), as well as the negative magnetoresistance Δρ, which is strongly anisotropic to the magnetic field orientation (Ha and Hc), with the easy magnetization direction along the c axis and a weak dependence on the probing current direction in the low-temperature region. The experimental ρa(T) and ρc(T) curves obtained for the initial and radiation-disordered samples can be described within the framework of a theoretical model with two conductivity channels. The first channel corresponds to the charge carriers with increased effective masses (~10m e , where m e is the electron mass) and predominantly electron-electron scattering, which leads to the quadratic temperature dependences of ρa and ρc. The second channel corresponds to the charge carriers with lower effective masses exhibiting magnetic scattering at low temperatures, which leads to the temperature dependence of the ρa, c(T) ∝ 1/T type.  相似文献   

16.
Resistivity (ρ), thermal conductivity (k) and Seebeck coefficient (S) of La1–xCexB6 single crystals with various concentrations of cerium Ce ions was measured in a wide temperature range 3?300 K. The obtained data were analyzed in the framework of the Coqblin–Shrieffer model. The contributions of scattering of carriers on magnetic ions Ce for all transport parameters ρ(T), k(T), S(T) are revealed. Strong dependence of the magnetic scattering on concentration of the cerium ions are identified. The anomalous behavior of the transport parameters ρ(T), k(T), S(T) in the region near 30 K is attributed to the Δ ~ 30 K splitting of Г8 level.  相似文献   

17.
The thermal conductivity k and resistivity ρ of biocarbon matrices, prepared by carbonizing medium-density fiberboard at T carb = 850 and 1500°C in the presence of a Ni-based catalyst (samples MDF-C( Ni)) and without a catalyst (samples MDF-C), have been measured for the first time in the temperature range of 5–300 K. X-ray diffraction analysis has revealed that the bulk graphite phase arises only at T carb = 1500°C. It has been shown that the temperature dependences of the thermal conductivity of samples MDFC- 850 and MDF-C-850(Ni) in the range of 80–300 K are to each other and follow the law of k(T) ~ T 1.65, but the use of the Ni-catalyst leads to an increase in the thermal conductivity by a factor of approximately 1.5, due to the formation of a greater fraction of the nanocrystalline phase in the presence of the Ni-catalyst at T carb = 850°C. In biocarbon MDF-C-1500 prepared without a catalyst, the dependence is k(T) ~ T 1.65, and it is controlled by the nanocrystalline phase. In MDF-C-1500(Ni), the bulk graphite phase formed increases the thermal conductivity by a factor of 1.5–2 compared to the thermal conductivity of MDF-C-1500 in the entire temperature range of 5–300 K; k(T = 300 K) reaches the values of ~10 W m–1 K–1, characteristic of biocarbon obtained without a catalyst only at high temperatures of T carb = 2400°C. It has been shown that MDF-C-1500(Ni) in the temperature range of 40?300 K is characterized by the dependence, k(T) ~ T 1.3, which can be described in terms of the model of partially graphitized biocarbon as a composite of an amorphous matrix with spherical inclusions of the graphite phase.  相似文献   

18.
Phonon thermal conductivities κ22 (?TC1) and κ33 (? TC3) of tellurium-doped bismuth with an electron concentration in the range 1.8 × 1019nL ≤ 1.4 × 1020 cm?3 were studied in the temperature interval 2 < T < 300 K. The temperature dependence of the phonon thermal conductivity obtained on doped bismuth samples of both orientations exhibits two maxima, one at a low temperature and the other at a high temperature. The effect of various phonon relaxation mechanisms on the dependence of both phonon thermal conductivity maxima on temperature, impurity concentration, and electron density is studied.  相似文献   

19.
The dielectric spectra of Pb(1–z)Ba z (Mg1/3Nb2/3) m (Zn1/3Nb2/3) y (Ni1/3Nb2/3) n TixO3 (x = 0.25–0.4, y = 0.1130–0.0842, m = 0.4844–0.1298, n = 0.1266–0.4726, z = 0–0.15) ceramics with substitution in both A and B crystallographic positions of the perovskite structure are studied. The system demonstrates a transition from the relaxor state to the normal ferroelectric state in both cases: when the concentration of lead titanate grows and the concentration of barium is reduced. On the basis of experimental results, the x–T and z–T phase diagrams are plotted. Despite different crystal chemical reasons of the relaxor state emergence in the investigated solid solutions, their diagrams demonstrate an evident similarity. We have revealed the disappearance of the temperature hysteresis at the transition to the relaxor state in both cases, which has allowed us to make an assumption of the existence of tricritical points on the corresponding diagrams.  相似文献   

20.
Polarization-optical study of twinning and measurements of the Raman spectra and birefringence in oxyfluoride (NH4)3Ti(O2)F5 were carried out over the temperature range 90–350 K. Phase transitions were detected at temperatures T 01 = 266 K (second-order transition) and T 02 = 225 K (first order). It is assumed that the crystal symmetry is changed as follows: Fm3m ? I4/mmm ? I4/m. Anomalies of the spectral parameters are established in the frequency range of internal vibrations of ammonium ions and Ti(O2)F5 complexes. An analysis of the results shows that the transition at T 01 is likely due to small shifts of the tetrahedral groups from their position on the triad axis and that the transition at T 02 is due to fluorine-oxygen ordering of Ti(O2)F5 complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号