首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elastic scattering of two X-ray photons by a multicharged atomic ion has been studied theoretically. A pronounced resonance structure and strong angular anisotropy of differential scattering cross section have been predicted in the energy range of a scattered photon from ?ω–I1s to ?ω+I1s (where is the energy of the incident photon and is the ionization energy threshold of the shell of the ion). The absolute value of the observed cross section has been quantitatively estimated.  相似文献   

2.
Based on our previous study of the QCD inspired eikonalized model for describing vector meson photoproduction, pp, and \(\bar p\) p elastic scattering at high energies, we apply the mode to high energy K ± p elastic scattering. The total cross section σ tot(s), differential cross section dσ/dt, the ratio of the real part to imaginary part of the forward scattering amplitude ρ(s), and nuclear slope parameter function β(s) are calculated in the model. Our results show that the theoretical prediction for σ tot(s) is in a good agreement with the experimental data within error bars of the data. For the other theoretical predictions there are no data to test the predictive power of the model. We need the corresponding experimental data to examinate the validity of our QCD inspired eikonalized model. However, our calculations clearly show that the Odderon exchange in the process makes a significant contribution to the observable of ρ(s) and β(s). Therefore, we may conclude that there is a good opportunity to find the QCD Odderon in the K ± p elastic scattering at high energies.  相似文献   

3.
The photoionization cross sections for the 4p shell of ions of the Kr isoelectronic sequence Rb+, Sr2+, and Y3+ are calculated. The configuration interaction theory and the perturbation theory are used to describe the many-electron effects. The relativistic effects are taken into account in the Pauli-Fock approximation. The calculated resonance structure of photoionization cross sections for the 4p shell in the region below the 4s threshold associated with the autoionization of the 4s-np singly excited states and the 4p4p-nln′l′ doubly excited states reproduces the results of recent measurements of total photoabsorption cross sections for the Rb+, Sr2+, and Y3+ ions. It is found that, as the nuclear charge in the isoelectronic sequence increases, the ratio between the direct and correlation parts of amplitudes of the 4s-(n/?)p transition changes and, as the consequence, the minimum of the photoionization cross section of the 4s shell shifts from the continuous spectrum to the region of states of discrete spectrum. This accounts for the strong changes in the shape of the 4s-np resonances in the photoionization cross sections for the 4p shell of Rb+, Sr2+, and Y3+, as well as the distinction between the shapes of the 4s-6p 1/2 mirror resonance in the partial 4p 1/2 and 4p 3/2 photoionization cross sections for the Y3+ ion which do not suppress each other in the total photoionization cross section, as is the case for similar resonances in Rb+ and Sr2+.  相似文献   

4.
The transition of the hexagonal ice phase Ih to the clathrate phase sII has been found in the H2O-H2 system at a pressure of about 1 kbar under conditions of an excess of gaseous hydrogen. The pressures of the IhsII and sII → Ih transitions have been determined over a temperature range from ?36 to ?18°C, and the pressure dependence of the synthesis temperature of the clathrate phase from a liquid at pressures from 1.0 to 1.8 kbar has been constructed. The solubility of hydrogen in the Ih and sII phases and in liquid water has been measured. The concentration of hydrogen in the clathrate phase sII is about 1.2 wt % (10 mol %) near the boundary of the sII → Ih transition, and it increases to 2 wt % (16 mol %) at a pressure of 1.8 kbar.  相似文献   

5.
Using the microscopic theory formulated by de Gennes and extended by Takahashi and Tachiki, we calculate the transition temperatureT c and the pair functionF for the superlattices consisting of superconducting and ferromagnetic layers. Superconducting layers. (s) and ferromagnetic layers (f) are modeled byV s ≠0 andI m,s =0 andV f =0 andI m,f ≠0, whereV s .(V f ) is the BCS coupling constant andI m,s (I m,f ) is the molecular field fors (f) layers.  相似文献   

6.
The spin-precession-induced current through ferromagnet/nanomagnet/superconductorjunctions is investigated by using the nonequilibrium Green’s function method. It is foundthat the charge current I c for the spinprecession frequency ω less than the energy gap Δ onlyarises from the equal-spin Andreev reflection, which is independent of the spinpolarization p of the ferromagnetic lead, while that forω > Δ mainly originates from the quasiparticle’scontribution. Both equal-spin AR and quasiparticle scattering processes contribute to thespin current I s and the quasiparticlescattering process plays a dominant role. WhileI c forω < Δ can be enhanced by the spin polarizationp, I s decreases withp. These features may be of interest for ongoing experiments in thefield of molecular spintronics.  相似文献   

7.
Experimental results on quasielastic photoproduction of the ρ0 meson in association with a neutron, obtained at the HERA collider, are presented. The total and differential cross sections of the γp → ρ0 nπ+ reaction at the positron–proton center-of-mass energy of √s =319 GeV are measured. The data collected with the H1 detector in 2006 and 2007 correspond to an integrated luminosity of 1.16 pb?1. The kinematic region of the photon–proton cms energy of 20 < W γp <100 GeV, photon virtuality of Q 2 < 2 GeV2, and the ρ0 transverse momentum below 1 GeV/c is analyzed. Secondary neutrons with energies x L > 0.35 (in proton-energy units) and emission angles below 0.75 mrad are selected. The model of double peripheral exchange, in which the ρ0 is elastically produced via the photon interaction with the virtual pion from the proton–neutron vertex, is employed for interpreting the results. The cross section for the ρ0 elastic photoproduction on the pion, γπ+→ ρ0π+, is extracted in the one-pion-exchange approximation. The magnitude of the cross section suggests that the γp → ρ0 nπ+ reaction is significantly affected by absorption.  相似文献   

8.
The differential cross sections of anomalous elastic scattering of a linearly polarized x-ray photon by a neon-like Si ion in the energy range near the K-and KL 23-ionization thresholds are calculated. The calculation results are predictive.  相似文献   

9.
As a preparation for the new experiment to measure the ne scattering length ane the total neutron cross section of gaseous argon has been obtained by the time-of-flight method at the Dubna booster IBR-30 in the energy range from ~5 eV to ~30 keV. A combined one-level analysis of the newly obtained and other known data on cross sections of Ar and 36Ar has made it possible to improve some neutron parameters and calculate the scattering cross section σs and the scattering length a separately for 36Ar and 40Ar at any energy.  相似文献   

10.
The excitation of resonance lines at 226.5 and 214.4 nm, corresponding to the transitions 226.5 (5p 2 P 1 2/0 →5s 2 S 1/2) and 5p 2 P 3 2/0 → 5s 2 S 1/2, respectively, in the Cd+ ion upon collisions with monoenergetic electrons with an energy in the range of 4–130 eV is studied with high precision by a spectroscopic method in crossing beams. It is found that the dependence of the effective excitation cross sections of the resonance doublet components on the energy of the electrons has a distinct resonance structure. It is shown that the dominant mechanism responsible for this structure is the capture of an incident electron by a Cd+ ion with the simultaneous excitation of an electron from the subvalence 4d 10 shell to the autoionizing states of the Cd atom with their subsequent decay (directly or via cascade transitions) to resonance levels of the ion. The results obtained are compared with data from other experiments and with the results of the R-matrix strong-coupling calculation of 15 states and of semiempirical calculation using the Van Regemorter formula.  相似文献   

11.
The photoionization cross sections of the 4p shell and the 4s main level and 4p 4(3 P) 5s 4 P 5/2, 3/2 satellite subvalence levels of KrII have been calculated in the 4s-near-threshold range of excitation energies from 28.48 to 28.70 eV. The calculation takes into account the core relaxation by the methods of the theory of non-orthogonal orbitals, the interaction between resonant states through autoionization channels by solving the complex secular equation, and the interaction between the channels of the continuous spectrum in all orders of the perturbation theory by the K-matrix method. Good quantitative agreement between the energy-integrated theoretical and experimental photoionization cross sections for the satellite levels has been obtained for the first time. It is shown that only simultaneous consideration of the above-mentioned effects leads to such agreement. The resonant structure of the photoionization cross sections in this excitation energy range is related to the autoionization decay of the 4p 45s(4 P 1/2)np and 4p 45s(2 P 3/2)np Rydberg series. The specificity of this process is that both series manifest themselves not independently but owing to their strong electrostatic interaction with the prominent 4p 4(1 D)5s 2 D 5/2 6p 3/2 resonance, which lies in this excitation energy range.  相似文献   

12.
Pioneering theoretical data for single-electron charge transfer and excitations due to collisions between Bi4+ ions in the ground (6s) and metastable (6p) states are gained in the collision energy interval 5–75 keV in the center-of-mass frame. The cross sections of the processes are calculated in terms of the close-coupling method in the basis of two-electron quasi-molecular states for the Coulomb trajectory of nuclei. It is found that single-electron capture into the singlet 6s 2 states of Bi3+ ions makes a major contribution to the charge transfer total cross section for Bi4+(6s) + Bi4+(6s) collisions (reaction 1), whereas single-electron capture into the singlet 6s6p states is the basic contributor to the total cross section in Bi4+(6s) + Bi4+(6p) collisions (reaction 2). In the collision energy interval mentioned above, the collision cross sections vary between 1.2 × 10?17 and 1.9 × 10?17 cm2 for reaction 1 and between 3.8 × 10?17 and 5.3 × 10?17 cm2 for reaction 2. In reaction 1, the 6s → 6p excitation cross sections vary from 0.6 × 10?16 to 0.8 × 10?16 cm2 for the singlet channel and from 2.2 × 10?16 to 2.8 × 10?16 cm2 for the triplet channel. The calculation results are compared with the data obtained in experiments with crossed ion beams of kiloelectronvolt energy. The fraction of metastable ions in the beams is estimated by comparing the experimental data with the weighted average theoretical results for the cross sections of reactions 1 and 2. From the data for the charge transfer cross sections, one can estimate particle losses in relativistic beams due to a change in the charge state of the ions colliding with each other in the beam because of betatron oscillations.  相似文献   

13.
The elastic-scattering process proceeding through two resonance levels that have the same spin j and equal resonance energies, (E1 = E2), but different widths (Γ1 ≠ Γ2) is considered. It is shown that the energy dependence of the total scattering cross section has two equal maxima at the points E1 ± (1/2) \(\sqrt {{\Gamma _1}{\Gamma _2}} \), the cross-section value at the maxima being 4π (2j + 1)?2, where ? is the wavelength of the incident particle in the c.m. frame, and that, at the energy E1, the cross section vanishes, σ (E1) = 0. The cross section is symmetric with respect to the point E1.  相似文献   

14.
The nuclear Zeeman levels of the odd isotopes of Ytterbium (171Yb,171 I=1/2;173Yb,173 I=5/2) were polarized in the atomic ground state (6s 2 1 S 0) by means of optical pumping with the resonance line (6s 2 1 S 0 ? 6s6p 1 P 1,λ=3988 å). The magnetic moments, calculated from the nuclear Hf-Zeeman transitions in a magnetic field of 228 Gauss are171 Μ I=0.49188 (2)Μ K 173 Μ I=0,67755 (3)Μ K (with diamagnetic correction applied).  相似文献   

15.
The near-threshold portions of the energy dependences of the effective excitation cross sections of the resonance transition 4d105p2P1/2° → 4d105s2S1/2 and the two-electron forbidden transition 4d95s22D5/2 → 4d105p2P3/2° in the spectrum of the Cd+ ion were investigated by the spectroscopic method in crossed electron and ion beams. In the region of energy splitting of the 2P° and 2D levels, a significant resonance contribution of the autoionizing states of cadmium (decaying during the Coster-Kronig process) to the effective excitation cross sections of the noted transitions was revealed for the first time. It is found that the resonance contribution manifests itself much more strongly for the forbidden transition in comparison with the more intense resonance transition; i.e., the manifestation of the Coster-Kronig effect in the electron excitation of ions depends strongly on the cross section of the direct process. It is ascertained that, during the Coster-Kronig process, the main contribution to the resonance excitation of both the resonance and the two-electron forbidden spectral transitions is from the low-lying terms of the series of autoionizing states 4d105p(2P3/2°)ns, md and 4d9(2D3/2)5s2ns, md, which are in the splitting region of the 2P1/2, 3/2° and 2D5/2, 3/2 levels, rather than from the high-lying atomic autoionizing states of cadmium, which are located near the ionization limits (corresponding to the and 2P3/2° and 2D3/2 levels).  相似文献   

16.
The emission spectrum of an injection GaAs laser with a four-sided resonator with a square cross section of size 13×13 μm2 is presented. This laser is the world’s smallest laser, having the threshold current Ith=0.7 mA and a photon flight time in the resonator that is shorter than the thermal relaxation time T2. It is shown that the emission spectrum of the laser drastically differs from the spectrum emitted by lasers of usual size.  相似文献   

17.
A study has been made of the cathodoluminescence of ZnSe crystals annealed in vacuum [ZnSe(Vac)], in vacuum and, subsequently, in antimony melt [(ZnSe(Vac)(Sb)], or in a zinc melt with subsequent annealing in antimony [ZnSe(Zn)(Sb)]. The emission of all samples contained the I 1 s,d -nLO series. The LO-phonon replicas of the emission line I 1 s observed in ZnSe(Vac) samples are accompanied by single-plasmon satellites. The plasmon energy determining the replica separation is ?ωp?10 meV. The emission lines of ZnSe(Zn)(Sb) samples have the smallest half-width. We report the first observation of anomalous broadening of the zero-phonon line I 1 s in ZnSe(Vac) samples caused by a high zinc vacancy content. A theory on the shape of the emission spectrum under two-phonon resonance is developed including bound-exciton interaction with mixed plasmon-phonon vibrational modes. It is shown that the splitting of the I 1 d line at T?2 K may originate from resonance exciton-phonon interaction between exciton-impurity complexes.  相似文献   

18.
Cross sections for elastic electron scattering were measured for titanium relative to carbon and beryllium at the Darmstadt electron linear accelerator. The energy and angle were varied from 33 to 58 MeV and from 33° to 165°. Phase shift calculations of the scattering cross section show that the rms-radiusR m determined from the measurements is almost independent of specific assumptions about the charge distribution. For the natural isotopic mixture of titanium the measurements yieldR m=(3.60±0.04) fm. This result agrees well with measurements of the (2p-1s)-transition energy in the muon-titanium-atom.  相似文献   

19.
For the \(\bar pp\) and pp systems, we have used all of the extensive data of the Particle Data Group [K. Hagiwara et al. (Particle Data Group), Phys. Rev. D 66, 010001 (2002)]. We then subject these data to a screening process, the “Sieve” algorithm [M. M. Block, physics/0506010], in order to eliminate “ outliers” that can skew a χ2 fit. With the “Sieve” algorithm, a robust fit using a Lorentzian distribution is first made to all of the data to sieve out abnormally high Δχ i 2 , the individual ith point’s contribution to the total χ2. The χ2 fits are then made to the sieved data. We demonstrate that we cleanly discriminate between asymptotic ln s and ln2 s behavior of total hadronic cross sections when we require that these amplitudes also describe, on average, low energy data dominated by resonances. We simultaneously fit real analytic amplitudes to the “sieved” high energy measurements of \(\bar pp\) and pp total cross sections and ρ-values for \(\sqrt s \) ≥ GeV, while requiring that their asymptotic fits smoothly join the the σ pp and σpp total cross sections at \(\sqrt s \) = 4.0 GeV—again both in magnitude and slope. Our results strongly favor a high energy ln2 s fit, basically excluding a ln s fit. Finally, we make a screened Glauber fit for the p-air cross section, using as input our precisely-determined pp cross sections at cosmic ray energies.  相似文献   

20.
An interpretation of quantum mechanics is discussed. It is assumed that quantum is energy. An algorithm by means of the energy interpretation is discussed. An algorithm, based on the energy interpretation, for fast determining a homogeneous linear function f(x) := s.x = s 1 x 1 + s 2 x 2 + ? + s N x N is proposed. Here x = (x 1, … , x N ), x j R and the coefficients s = (s 1, … , s N ), s j N. Given the interpolation values \((f(1), f(2),...,f(N))=\vec {y}\), the unknown coefficients \(s = (s_{1}(\vec {y}),\dots , s_{N}(\vec {y}))\) of the linear function shall be determined, simultaneously. The speed of determining the values is shown to outperform the classical case by a factor of N. Our method is based on the generalized Bernstein-Vazirani algorithm to qudit systems. Next, by using M parallel quantum systems, M homogeneous linear functions are determined, simultaneously. The speed of obtaining the set of M homogeneous linear functions is shown to outperform the classical case by a factor of N × M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号