首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A double Nambu formalism is developed which can deal in a straight-forward manner with all possible instabilities of a single band with nesting Fermi surfaces. Besides the usual density waves and superconductivity, also strong coupling phenomena are considered, such as ferromagnetism, Martensitic instability, and the somewhat bizarre state of localized Cooper pairs. The system is solved in the mean field approximation which is valid when the Fermi surfaces are not too flat.  相似文献   

2.
Interface states at a boundary between regions with different spin-orbit interactions (SOIs) in two-dimensional (2D) electron systems are investigated within the one-band effective mass method with generalized boundary conditions for envelope functions. We have found that the interface states unexpectedly exist even if the effective interface potential equals zero. Depending on the system parameters, the energy of these states can lie in either or both forbidden and conduction bands of bulk states. The interface states have chiral spin texture similar to that of the edge states in 2D topological insulators. However, their energy spectrum is more sensitive to the interfacial potential, the largest effect being produced by the spin-dependent component of the interfacial potential. We have also studied the size quantization of the interface states in a strip of 2D electron gas with SOI and found an unusual (non-monotonic) dependence of the quantization energy on the strip width.  相似文献   

3.
We consider the spin edge states, induced by the combined effect of spin-orbit interaction and hard-wall confining potential, in a two-dimensional electron system exposed to a perpendicular quantizing magnetic field. We derive an exact analytical formula for the dispersion relations of spin edge states and analyze their energy spectrum, velocity, and average transverse position. It is shown that by removing the spin degeneracy, spin-orbit interaction splits the spin edge states not only in the energy but also induces their spatial separation. It is revealed that at low magnetic fields, due to the Stark splitting of the spin-resolved edge states, the high-energy bands exhibit anti-crossings. This results in an additional structure in the behavior of the velocity of current-carrying edge states.  相似文献   

4.
5.
Low-temperature electronic properties of the charge-density-wave system NbSe3 are reported from angle-resolved photoemission at 15 K. The effect of two instabilities q(1) and q(2) on the k-resolved spectral function is observed for the first time. With a pseudogap background, the gap spectra exhibit maxima at Delta*(1) approximately 110 meV and Delta*(2) approximately 45 meV. Imperfectly nested sections of the Fermi surface lack a Fermi-Dirac edge, and show the signature of a dispersion that is modified by self-energy effects. The energy scale is of the order of the effective gap 2 Delta*(2). The effect disappears above T2, suggesting a correlation with the charge-density-wave state.  相似文献   

6.
S N Behera  Sk. Samsur 《Pramana》1980,15(4):375-398
The question of the occurrence of two-phonon bound states in imperfect crystals is investigated. It is shown that the anharmonicity mediated two-phonon bound state which is present in perfect crystals gets modified due to the presence of impurities. Moreover, the possibility of the occurrence of a purely impurity mediated two-phonon bound state is demonstrated. The bound state frequencies are calculated using the simple Einstein oscillator model for the host phonons. The two-phonon density of states for the imperfect crystal thus obtained has peaks at the combination and difference frequencies of two host phonons besides the peaks at the bound state frequencies. For a perfect crystal the theory predicts a single peak at the two-phonon bound state frequency in conformity with experimental observations and other theoretical calculations. Experimental data on the two-phonon infrared absorption and Raman scattering from mixed crystals of GA1−c Al c P and Ge1−c Si c are analysed to provide evidence in support of impurity-mediated two-phonon bound states. The relevance of the zero frequency (difference spectrum) peak to the central peak observed in structural phase transitions, is conjectured; This work is a part of the thesis to be submitted by one of the authors (SS) in partial fulfilment of the degree of Doctor of Philosophy to Utkal University, Bhubaneswar, India.  相似文献   

7.
Optical NOON states ${{\left( {\left| {\left. {N,0} \right\rangle + } \right|\left. {0,N} \right\rangle } \right)} \mathord{\left/ {\vphantom {{\left( {\left| {\left. {N,0} \right\rangle + } \right|\left. {0,N} \right\rangle } \right)} {\sqrt 2 }}} \right. \kern-\nulldelimiterspace} {\sqrt 2 }}${{\left( {\left| {\left. {N,0} \right\rangle + } \right|\left. {0,N} \right\rangle } \right)} \mathord{\left/ {\vphantom {{\left( {\left| {\left. {N,0} \right\rangle + } \right|\left. {0,N} \right\rangle } \right)} {\sqrt 2 }}} \right. \kern-\nulldelimiterspace} {\sqrt 2 }} are an important resource for Heisenberg-limited metrology and quantum lithography. The only known methods for creating NOON states with arbitrary N via linear optics and projective measurements seem to have a limited range of application due to imperfect phase control. Here, we show that bootstrapping techniques can be used to create high-fidelity NOON states of arbitrary size.  相似文献   

8.
The phase transitions and critical properties of two types of inhomogeneous systems are reviewed. In one case, the local critical behaviour results from the particular shape of the system. Here scale-invariant forms like wedges or cones are considered as well as general parabolic shapes. In the other case the system contains defects, either narrow ones in the form of lines or stars, or extended ones where the couplings deviate from their bulk values according to power laws. In each case the perturbation may be irrelevant, marginal or relevant. In the marginal case one finds local exponents which depend on a parameter. In the relevant case unusual stretched exponential behaviour and/or local first-order transitions appear. The discussion combines mean field theory, scaling considerations, conformal transformations and perturbation theory. A number of examples are Ising models for which exact results can be obtained. Some walks and polymer problems are considered, too.  相似文献   

9.
The hierarchy of fractionally quantized Hall states of Haldane and Halperin is extended to the case of double-layer electron systems. Recursion relations for the filling fractions and flux shifts in the spherical geometry are derived and used to elaborate simple cases, including quasiparticle condensates with opposite charges in different layers. Extensive numerical studies are presented, which provide evidence for many of our predictions.  相似文献   

10.
We theoretically investigate the dynamics of the photoexcited state in the strongly correlated low-dimensional electron systems. In the two-dimensional case, the ultrafast relaxation originating from the transfer of photogenerated charges in the antiferromagnetic background is followed by the slower one originating from the spin structure rearrangement with the new charge distributions. This clearly shows the difference in the relaxation between charge and spin degrees of freedom. In the one-dimensional case, spin-charge separation holds and the mechanical coherence is preserved.  相似文献   

11.
Surface magnetoelastic Love waves and nonuniform distributions of the magnetization and elastic strains are investigated in a uniaxial ferromagnetic film on a massive nonmagnetic substrate in a tangential external magnetic field. A new inhomogeneous phase is predicted having spatial modulation of the order parameter, arising from magnetostrictive coupling of the magnetization with lattice strains near the interface of the magnetoelastic and elastic media. It is shown that, at some critical magnetic field H c, different from the orientational transition field in an isolated sample, a magnetoelastic Love wave propagating parallel to the magnetization vector in the film plane becomes unstable. The frequency and group velocity of the wave vanish at wave number k=k c≠0 and the wave freezes, forming a domain structure localized in the film and adjoining substrate. Fiz. Tverd. Tela (St. Petersburg) 41, 665–671 (April 1999)  相似文献   

12.
13.
We review our recent theoretical results for mesoscopic fluctuations of the local density of states in the presence of electron–electron interaction. We focus on the two specific cases: (i) a vicinity of interacting critical point corresponding to an Anderson–Mott transition, and (ii) a vicinity of non-interacting critical point in the presence of a weak electron–electron attraction. In both cases, strong mesoscopic fluctuations of the local density of states exist.  相似文献   

14.
We study the spin edge states, induced by the combined effect of Bychkov-Rashba spinorbit and Zeeman interactions or of Dresselhaus spin-orbit and Zeeman interactions in a twodimensional electron system, exposed to a perpendicular quantizing magnetic field and restricted by a hard-wall confining potential. We derive an exact analytical formula for the dispersion relations of spin edge states and analyze their energy spectrum versus the momentum and the magnetic field. We calculate the average spin components and the average transverse position of electron. It is shown that by removing the spin degeneracy, spin-orbit interaction splits the spin edge states not only in the energy but also induces their spatial separation. Depending on the type of spin-orbit coupling and the principal quantum number, the Zeeman term in the combination with spin-orbit interaction increases or decreases essentially the splitting of bulk Landau levels while it has a weak influence on the spin edge states.  相似文献   

15.
The interaction of inhomogeneous relativistic electron beam with inhomogeneous bounded warm plasma, which leads to amplification of waves, is analyzed. It is shown that due to the resonant increase in wave’s field with a decrease in the plasma permittivity to zero, the power absorbed by plasma is finite and depends on the plasma thermal velocity. The relativistic electron beam not only amplifies waves in plasma but also provides efficient absorption of these waves by plasma.  相似文献   

16.
A theory of interaction of the electromagnetic field with one-particle electron and positron Coulomb states emerging in nanopores of semiconductors is developed. It is established using the dipole approximation that the oscillator strengths of the transitions and the dipole moments of one-particle electron and positron states in nanopores assume giant values considerably exceeding the typical values of the corresponding quantities for semiconductors.  相似文献   

17.
S. Nazin  V. Shikin 《JETP Letters》2010,91(6):277-280
The structural details of an edge electronic state in external-field-bounded 2D charged (electron or hole) systems at the zero boundary density of the mobile charge carriers are discussed. It is shown that the so-called “soft” edge electronic states (SESs) appear along these boundaries. The details of their structure and spectrum are analyzed, and the possible effects with the SESs are outlined.  相似文献   

18.
We present a theoretical model in which the existence of radiation-induced zero-resistance states is analyzed. An exact solution for the harmonic oscillator wave function in the presence of radiation, and a perturbation treatment for elastic scattering due to randomly distributed charged impurities, form the foundations of our model. Following this model most experimental results are reproduced, including the formation of resistivity oscillations, their dependence on the intensity and frequency of the radiation, temperature effects, and the locations of the resistivity minima. The existence of zero-resistance states is thus explained in terms of the interplay of the electron microwave-driven orbit dynamics and the Pauli exclusion principle.  相似文献   

19.
雷啸霖 《物理》2004,33(9):623-628
一年以前 ,人们惊奇地发现 :在相当弱的磁场中 ,并不太强的微波辐照就可以使二维半导体的磁阻产生强烈的振荡 ,振幅的最大值可超过无辐照磁阻值的十几倍 ,最小值可以一直降到零 .全世界众多的凝聚态物理学家争相聚焦到这个领域 ,进行了许多实验和理论研究 ,企图弄清这一意外发现的机理 .经过一年多的努力 ,人们已经掌握了这个现象更多的细节 ,对其物理机制也有了初步了解 .但深入的实验和理论探索可能还要继续相当一段时间 .文章将对这个物理现象及相关的理论模型 ,尤其是目前得到较多赞同的光子辅助磁输运模型 ,作一简单的介绍 .  相似文献   

20.
We have measured the energy-level structure of high mobility, strongly coupled bilayer two-dimensional electron systems in tilted magnetic fields by means of magnetotransport experiments. At tilt angles where single-particle levels with opposite spin and symmetry cross, we observe a surprising sudden broadening of the quantum Hall plateaus and a deepening of the Shubnikov–de Haas minima. This observation is explained by an interaction-induced rearrangement of the energy level structure which strongly increases the energetic splitting of two (anti-)crossing levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号