首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The problem of convective magnetohydrodynamic channel flow in a vertical channel subjected simultaneously to an axial temperature gradient and a pressure gradient is examined when the thermal and the electrical conductance of the channel walls are arbitrary. The effects of wall conductances on the flow rate and heat transfer are found and discussed. When the vertical temperature gradient is negative, which is the case of heating from below, there exists a critical Rayleigh number at which the fluid becomes unstable. The critical Rayleigh number is also found as a function of the wall conductances.On leave from the State University of New York at Buffalo.  相似文献   

2.
An analysis is made of convective heat transport, produced by uniform heating from below, in a horizontal layer of a porous medium consisting of vertical slabs or columns of different permeabilities. Estimates of the heat flux are made on the assumption that flow in one column does not interact with flow in adjacent columns. The results are compared with those for a homogeneous layer, for which previous work is reviewed. It is found that an inhomogeneous layer transports less heat than a homogeneous layer for which the mean Rayleigh number is the same, if the Rayleigh number is supercritical throughout the layer. If the Rayleigh number is subcritical in part of the layer, the inhomogeneous layer may transport more heat than the equivalent homogeneous layer.  相似文献   

3.
The onset of convective rolls instability in a horizontal porous layer subject to a basic temperature gradient inclined with respect to gravity is investigated. The basic velocity has a linear profile with a non-vanishing mass flow rate, i.e., it is the superposition of a Hadley-type flow and a uniform flow. The influence of the viscous heating contribution on the critical conditions for the onset of the instability is assessed. There are four governing parameters: a horizontal Rayleigh number and a vertical Rayleigh number defining the intensity of the inclined temperature gradient, a Péclet number associated with the basic horizontal flow rate, and a Gebhart number associated with the viscous dissipation effect. The critical wave number and the critical vertical Rayleigh number are evaluated for assigned values of the horizontal Rayleigh number, of the Péclet number, and of the Gebhart number. The linear stability analysis is performed with reference either to transverse or to longitudinal roll disturbances. It is shown that generally the longitudinal rolls represent the preferred mode of instability.  相似文献   

4.
In this second part of our analysis of the destabilization of transverse modes in an extended horizontal layer of a saturated porous medium with inclined temperature gradient and vertical throughflow, we apply the mathematical formalism of absolute and convective instabilities to studying the nature of the transition to instability of such modes by assuming on physical grounds that the transition is triggered by growing localized wavepackets. It is revealed that in most of the parameter cases treated in the first part of the analysis (Brevdo and Ruderman 2009), at the transition point the evolving instability is convective. Only in the cases of zero horizontal thermal gradient, and in the cases of zero vertical throughflow and the horizontal Rayleigh number R h < 49, the instability is absolute implying that, as the vertical Rayleigh number, R v, increases passing through its critical value, R vc, the destabilization tends to affect the base state throughout and eventually destroys it at every point in space. For the parameter values considered, for which the destabilization has the nature of convective instability, we found that, as R v, increases beyond the critical value, while the horizontal Rayleigh number, R h, and the Péclet number, Q v, are kept fixed, the flow experiences a transition from convective to absolute instability. The values of the vertical Rayleigh number, R v, at the transition from convective to absolute instability are computed. For convectively unstable, but absolutely stable cases, the spatially amplifying responses to localized oscillatory perturbations, i.e., signaling, are treated and it is found that the amplification is always in the direction of the applied horizontal thermal gradient.  相似文献   

5.
The effect of weak mixture concentration on the threshold of convective instability of a binary mixture filling a cavity of arbitrary shape is investigated. In the case of thermally insulated boundaries in the neighborhood of the critical Rayleigh number monotonicity of perturbations is proved. This makes it possible to express the critical Rayleigh number for the mixture in terms of its analog for a single-component fluid at any values of the Soret parameter. In the general case of boundaries of arbitrary thermal conductivity an estimate of the critical Rayleigh number is obtained for small values of the Soret parameter.Perm'. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 161–165, November–December, 1996.  相似文献   

6.
The development of two-dimensional thermo-gravitational convection in an elongated horizontal layer bounded by solid surfaces with the bottom instantaneously heated is investigated. The characteristics of the transition from the heat conduction regime to the convective regime are considered. The flow pattern and the heat transfer properties are described from the initial instant, which corresponds to the isothermal fluid at rest, up to the attainment of the steady-state roll-convection regime. A criterial dependence between the Rayleigh number and the nondimensional time of onset of the influence of thermo-gravitational convection on heat transfer is obtained.  相似文献   

7.
The results of calculating the convective flow in cylindrical porous interlayers are presented as functions of the Rayleigh number, the thickness of the interlayer, and the three-dimensional permeability anisotropy for various methods of specifying the temperature on the cylindrical surfaces. The influence of the three-dimensional effects on the flow structure and heat transfer are analyzed. The existence of single-vortex and multivortex convection regimes is established and the conditions of transition to oscillatory and unsteady flow regimes are investigated in terms of the basic parameters.  相似文献   

8.
The linear thermoconvective instability of the basic parallel flow in a plane and horizontal porous channel is investigated. The boundary walls are assumed to be impermeable and subject to symmetric and uniform heat fluxes. The wall heat fluxes produce either a net heating or a net cooling of the fluid saturated porous medium. A horizontal mass flow rate is externally impressed leading to a stationary basic state with a temperature gradient inclined to the vertical. A region of possibly unstable thermal stratification exists either in the lower half-channel (boundary heating), or in the upper half-channel (boundary cooling). The convective instability of the basic flow is governed by the Rayleigh number and by the Péclet number. In the case of boundary heating, the thermal instability arises when the Rayleigh number exceeds its critical value, that depends on the Péclet number. The change of the critical Rayleigh number as a function of the Péclet number is determined numerically for arbitrary normal modes oblique to the basic flow direction. The most dangerous modes are the longitudinal rolls, with a wave vector perpendicular to the basic velocity. There exists a minimum value of the Péclet number, 19.1971, below which no linear instability is detected.  相似文献   

9.
This Note deals with mixed convection in binary fluid with Soret effect in a rectangular duct heated from below. In particular, we study the transition towards transverse 2D rolls appearing at low Reynolds and Rayleigh numbers. The linear stability analysis of Poiseuille flow, with linearly stratified temperature and concentration fields, shows the influence of the separation ratio on the critical Rayleigh number at the transition towards the transversal 2D convective patterns. It highlights the presence, at low Reynolds numbers, of propagating transverse rolls in the downwards as well as in the upwards direction. Finally, we point out that, under these conditions, the propagating frequency of the rolls is the sum of two well defined frequencies: the first related to the Reynolds, the second to the separation ratio. To cite this article: E. Piquer et al., C. R. Mecanique 333 (2005).  相似文献   

10.
Natural convection in an inclined enclosure from below and containing internally heated fluid has been investigated using a finite difference calculation procedure. Results have been obtained for Rayleigh number values up to 106 and for inclination angles of 30 and 60°. For internal Rayleigh numbers that are much larger than the external Rayleigh number, the flow rises in the interior and moves down both the hot and cold walls. On the other hand, if the external Rayleigh number has a larger magnitude, the flow moves upwards along the hot surface and downwards along the cold surface. For the latter situation, the inner core is multicellular in nature at large external Rayleigh numbers. The average heat flux ratio along the cold surface (convective heat flux/corresponding conduction heat flux) increases with increasing external Rayleigh number and decreasing internal ratio is non-monotonic in nature. The heat flux ratio along both surfaces is observed to be strongly dependent on the inclination angle at high external Rayleigh numbers. A maximum in the local heat flux along the cold surface is obtained in the vicinity of x/L = 1 where hot fluid, either from the interior or directly from the opposite hot wall, meets the surface. Along the hot wall, a maximum in the heat flux ra flo  相似文献   

11.
Fluid flow and heat and mass transfer induced by double-diffusive natural convection in a horizontal porous layer subjected to vertical gradients of temperature and concentration are studied analytically and numerically using the Brinkman-extended Darcy model. Both cases of rigid and free horizontal boundaries are examined in the present study. The parameters governing the problem are the Rayleigh number RT, the Lewis number Le, the buoyancy ratio N, the Darcy number Da and the aspect ratio Ar. The analytical solution is based on the parallel flow approximation. The critical Rayleigh number corresponding to the onset of the parallel flow in this system is determined analytically as a function of Le, N and Da. For sufficiently small Da, both free and rigid boundaries yield results which are identical to those predicted by the Darcy model. The present investigation shows that there exists a region in the plane (N, Le) where the convective flow is not possible in the layer regardless of the Rayleigh and Darcy numbers considered. Received on 21 December 1998  相似文献   

12.
The linear stability of the double-diffusive convection in a horizontal porous layer is studied considering the upper boundary to be open. A horizontal temperature gradient is applied along the upper boundary. It is assumed that the viscous dissipation and Soret effect are significant in the medium. The governing parameters are horizontal Rayleigh number (\(Ra_\mathrm{H}\)), solutal Rayleigh number (\(Ra_\mathrm{S}\)), Lewis number (Le), Gebhart number (Ge) and Soret parameter (Sr). The Rayleigh number (Ra) corresponding to the applied heat flux at the bottom boundary is considered as the eigenvalue. The influence of the solutal gradient caused due to the thermal diffusion on the double-diffusive instability is investigated by varying the Soret parameter. A horizontal basic flow is induced by the applied horizontal temperature gradient. The stability of this basic flow is analyzed by calculating the critical Rayleigh number (\(Ra_\mathrm{cr}\)) using the Runge–Kutta scheme accompanied by the Shooting method. The longitudinal rolls are more unstable except for some special cases. The Soret parameter has a significant effect on the stability of the flow when the upper boundary is at constant pressure. The critical Rayleigh number is decreasing in the presence of viscous dissipation except for some positive values of the Soret parameter. How a change in Soret parameter is attributing to the convective rolls is presented.  相似文献   

13.
The onset of convection and its nonlinear regimes in a heated from below two-layer system consisting of a horizontal pure fluid layer and porous medium saturated by the same fluid is studied under the conditions of static gravitational field. The problem is solved numerically by the finite-difference method. The competition between the long-wave and short-wave convective modes at various ratios of the porous layer to the fluid layer thicknesses is analyzed. The data on the nature of convective motion excitation and flow structure transformation are obtained for the range of the Rayleigh numbers up to quintuple supercriticality. It has been found that in the case of a thick porous layer the steady-state convective regime occurring after the establishment of the mechanical equilibrium becomes unstable and gives way to the oscillatory regime at some value of the Rayleigh number. As the Rayleigh number grows further the oscillatory regime of convection is again replaced by the steady-state convective regime.  相似文献   

14.
The problem of convective flow through a porous medium in a plane rectangular vessel with a linear temperature profile steadily maintained on the boundary is considered. Single-parameter families of steady-state regimes resulting from the existence of cosymmetry of the corresponding differential equations are investigated using the Galerkin method. The onset and development of instability on these families and the characteristics of convective regimes as functions of the seepage Rayleigh number and the rectangle side ratio are studied. It is shown that the number of regimes which lose stability, the instability type, the number of convective rollers developed, and the heat transfer depend significantly on the vessel geometry. Several bifurcations of single-parameter families of steady-state regimes are identified and investigated.  相似文献   

15.
宁利中  张珂  宁碧波  吴昊  田伟利 《应用力学学报》2020,(2):737-742,I0019,I0020
为了研究矩形倾斜腔体中普朗特数Pr=0.72的流体对流斑图和分区,本文基于流体力学方程组进行了数值模拟。在相对瑞利数r=6.0的情况下,观察了倾角θ=10°和θ=60°时对流斑图随着时间的发展,发现系统存在单圈型对流和多圈型对流两种斑图。流线随着倾角的变化说明:随着倾角增加,对流圈数逐渐减少,对流波长逐渐增加,对流波数减小;然后,随着对流圈数显著地减少,系统由多圈型对流过渡到单圈型对流。根据模拟计算结果,给出了多圈型对流过渡到单圈型对流的临界倾角θc随着相对瑞利数r变化的关系曲线。对流在θ-r平面上分为两个区域:θ<θc时系统是单圈型对流,θ>θc时系统是多圈型对流。对流最大振幅A和努塞尔数Nu随着倾角θ的变化曲线被临界倾角θc分成两段,它们有不同的变化规律。因此,临界倾角也可以由对流最大振幅A或努塞尔数Nu的变化曲线来确定。  相似文献   

16.
17.
The process of selection of longitudinal convective rolls in a thin layer of evaporating fluid immersed in an air turbulent boundary layer flow is studied numerically. The dependence of the two-dimensional flow patterns on the Rayleigh number and boundary conditions is analyzed. Calculations with account for the thermocapillary effect are carried out. The numerical results are compared with experimental data.  相似文献   

18.
The stability of stationary plane-parallel convective flow between horizontal planes along which a constant temperature gradient is given, is investigated relative to spatial perturbations. It is shown that the flow crisis is caused by spiral perturbations in a broad range of Prandtl number values (P > 0.24). Spiral perturbations are developed in unstably stratified fluid layers adjoining the upper and lower layer boundaries, and are of Rayleigh nature.  相似文献   

19.
Anti-convection and Rayleigh–Benard convection generated by the joint action of external heating and heat sources (sinks) on the interface in layers with finite thicknesses are studied. Numerical simulations of the finite-amplitude convective regimes have been mage for the real two-liquid system (silicone oil 10 cs – ethylenglycol), convenient for the performance of experiments. The nonlinear boundary value problem was solved by means of the finite-difference method. Anti-convective structures in fluid systems subject to anti-convective instability only in the presence of heat sources (sinks) on the interface, have been obtained. This new type of the anti-convective motion appears in the case where one layer is strongly heated from above, while the temperature gradient in another layer is very weak.  相似文献   

20.
Numerical solutions of stability and convective flow in an infinite horizontal water layer, including density inversion, have been obtained using a finite element code. The evolution of the temperature field and flow pattern near the onset of convection are studied in detail. It is known that natural convection develops primarily in the lower unstably stratified layer. Of interest is the penetration of the convection rolls into the upper stably stratified layer and concurrent liquid entrainment as a function of the increasing Rayleigh number at different aspect ratios. Individual convection rolls may grow and expand before splitting up into two roll cells. It is shown that changing the aspect ratio influences critical Rayleigh number, flow symmetry, flow pattern, and transitions between flow patterns. Numerical results on heating from above or from below, agree well with available results in the literature. A correlation to predict critical Rayleigh numbers is given for the case of heating from above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号