首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The correlation coefficient RuT between the streamwise velocity and temperature is investigated for the case of canonical shock-turbulence interaction, motivated by the fact that this correlation is an important component in compressible turbulence models. The variation of RuT with the Mach number, the turbulent Mach number, and the Reynolds number is predicted using linear inviscid theory and compared to data from DNS. The contributions from the individual Kovasznay modes are quantified. At low Mach numbers, the peak post-shock RuT is determined by the acoustic mode, which is correctly predicted by the linear theory. At high Mach numbers, it is determined primarily by the vorticity and entropy modes, which are strongly affected by nonlinear and viscous effects, and thus less well predicted by the linear theory.  相似文献   

2.
In this article, a numerical investigation is performed on flow and heat transfer of confined impinging slot jet, with a mixture of water and Al2O3 nanoparticles as the working fluid. Two-dimensional turbulent flow is considered and a constant temperature is applied on the impingement surface. The k ? ω turbulence model is used for the turbulence computations. Two-phase mixture model is implemented to study such a flow field. The governing equations are solved using the finite volume method. In order to consider the effect of obstacle angle on temperature fields in the channel, the numerical simulations were performed for different obstacle angles of 0° ? 60°. Also different geometrical parameters, volume fractions and Reynolds numbers have been considered to study the behavior of the system in terms of stagnation point, average and local Nusselt number and stream function contours. The results showed that the intensity and size of the vortex structures depend on jet- impingement surface distance ratio (H/W) and volume fraction. The maximum Nusselt number occurs at the stagnation point with the highest values at about H/W = 1. Increasing obstacle angle, from 15° to 60°, enhances the heat transfer rate. It was also revealed that the minimum value of average Nusselt number occurs in higher H/W ratios with decreasing the channel length.  相似文献   

3.
A new method of solving the problem of separation flow past a cascade of thin airfoils is proposed. The method is based on the model of separated flow past a single airfoil in which vortex wakes shed from the airfoil edges are modeled by vortex layers with time-averaged intensities. Under the assumption of a small deviation of the freestream angle α from the “impactless entry” angle α 0 the singular integral equation governing the flow kinematics is closed by a dynamic equation. It is shown that the separation effect on the time-averaged aerodynamic characteristics of the cascade is associated with the total pressure loss due to the flow energy expenditure on the vortex wake formation. The aerodynamic characteristics of the cascade calculated with and without account for flow separation differ by the second-order quantity ? = α ? α 0.  相似文献   

4.
The applicability of the criteria of existence of inviscid vortex structures (vortex Ferri singularities) is studied in the case in which a contact discontinuity of the corresponding intensity proceeds from the branching point of the λ shock wave configuration accompanying turbulent boundary layer separation under the action of an inner shock incident on the leeward wing panel. The calculated and experimental data are analyzed, in particular, those obtained using the special shadow technique developed for visualizing supersonic conical streams in nonsymmetric, Mach number 3 flow around a wing with zero sweep of the leading edges and the vee angle of 2π /3. The applicability of the criteria of existence of inviscid vortex structures is established for contact discontinuities generated by the λ shock wave configuration accompanying turbulent boundary layer separation realized under the action of a shock wave incident on the leeward wing panel. Thus, it is established that the formation of the vortex Ferri singularities in a shock layer is independent of the reason for the existence of the contact discontinuity and depends only on its intensity.  相似文献   

5.
The stationary and time-dependent aerodynamic coefficients of a slender blunt cone with a flap located near the base section of the model are experimentally investigated. The freestream parameters (M = 6, Re L = 0.88 × 107, and γ = 1.4) ensured a turbulent regime of flow over the conical surface and the flap. At high angles of attack (α ~ 10°) laminar-turbulent transition is observable in the separation zone on the leeward side of the body. Emphasis is placed on the determination of the trimming angles of attack for different positions of the center of rotation and the static and dynamic stability coefficients (the model oscillation damping coefficient).  相似文献   

6.
Direct numerical simulations of Taylor-Couette flow from Re= 8000 to 25000 have been conducted to investigate changes of turbulence statistics in the transition of the Reynolds number dependency of the mean torque near Re= 10000. The velocity fluctuations are decomposed into the contributions of the Taylor vortex and remaining turbulent fluctuations. Significant Reynolds number dependencies of these components are observed in the radial profiles of the Reynolds stress and the transmission of the mean torque. The contributions of Taylor vortex and turbulent components in the net amount of mean torque are evaluated. The Taylor vortex component is overtaken by the turbulent counterpart around Re= 15000 when they are defined as the azimuthally averaged component and the remnants. The results show that the torque transition can be explained by the competition between the contributions of azimuthally averaged Taylor vortex and the remaining turbulent components.  相似文献   

7.
The two-dimensional, laminar, unsteady natural convection flow in a square enclosure filled with aluminum oxide (\(\hbox {Al}_{2} \hbox {O}_{3}\))–water nanofluid under the influence of a magnetic field, is considered numerically. The nanofluid is considered as Newtonian and incompressible, the nanoparticles and water are assumed to be in thermal equilibrium. The mathematical modelling results in a coupled nonlinear system of partial differential equations. The equations are solved using finite element method (FEM) in space, whereas, the implicit backward difference scheme is used in time direction. The results are obtained for Rayleigh (Ra), Hartmann (Ha) numbers, and nanoparticles volume fractions (\(\phi\)), in the ranges of \(10^3 \le Ra \le 10^7\), \(0\le Ha \le 500\) and \(0 \le \phi \le 0.2\), respectively. The streamlines and microrotation contours are observed to show similar behaviors with altering magnitudes. For low Ra values, when \(Ha=0\), symmetric vortices near the walls and a central vortex in opposite direction are observed in vorticity. As Ra increases, the central vortex splits into two due to the circulation in the effect of the buoyant flow. Boundary layer formation is observed when Ha increases for almost all Rayleigh numbers in both streamlines and vorticity. The isotherms have horizontal profiles for high Ra values owing to convective dominance over conduction. As Ha is increased, the convection effect is reduced, and isotherms tend to have vertical profiles. This study presents the first FEM application for solving highly nonlinear PDEs defining micropolar nanofluid flow especially for large values of Rayleigh and Hartmann numbers.  相似文献   

8.
In this paper, the numerical dissipation properties of the Spectral Difference (SD) method are studied in the context of vortex dominated flows and wall-bounded turbulence, using uniform and distorted grids. First, the validity of using the SD numerical dissipation as the only source of subgrid dissipation (the so-called Implicit-LES approach) is assessed on regular grids using various polynomial degrees (namely, p = 3, p = 4, p = 5) for the Taylor-Green vortex flow configuration at R e = 5 000. It is shown that the levels of numerical dissipation greatly depend on the order of accuracy chosen and, in turn, lead to an incorrect estimation of the viscous dissipation levels. The influence of grid distortion on the numerical dissipation is then assessed in the context of finite Reynolds number freely-decaying and wall-bounded turbulence. Tests involving different amplitudes of distortion show that highly skewed grids lead to the presence of small-scale, noisy structures, emphasizing the need of explicit subgrid modeling or regularization procedures when considering coarse, high-order SD computations on unstructured grids. Under-resolved, high-order computations of the turbulent channel flow at R e τ = 1000 using highly-skewed grids are considered as well and present a qualitatively similar agreement to results obtained on a regular grid.  相似文献   

9.
The results of an experimental and numerical investigation of flow and heat transfer in the region of the interaction between an incident oblique shock and turbulent boundary layers on sharp and blunt plates are presented for the Mach numbers M = 5 and 6 and the Reynolds numbers ReL = 27×106 and 14×106. The plate bluntness and the incident shock position were varied. It is shown that the maximum Stanton number St m in the shock incidence zone decreases with increase in the plate bluntness radius r to a certain value and then varies only slightly with further increase in r. In the case of a turbulent undisturbed boundary layer heat transfer is diminished with increase in r more slowly than in the case of a laminar undisturbed flow. In the presence of an incident shock the bluntness of the leading edge of the flat plate results in a greater decrease in the Stanton number than in the absence of the shock. With increase in the bluntness of the leading edge of the plate the separation zone first sharply lengthens and then decreases in size or remains constant.  相似文献   

10.
The massively separated flows over a realistic aircraft configuration at 40?, 50?, and 60?angles of attack are studied using the delayed detached eddy simulation(DDES).The calculations are carried out at experimental conditions corresponding to a mean aerodynamic chord-based Reynolds number of 8.93 × 10~5 and Mach number of 0.088. The influence of the grid size is investigated using two grids, 20.0×10~6cells and 31.0 × 10~6 cells. At the selected conditions, the lift,drag, and pitching moment from DDES predictions agree with the experimental data better than that from the Reynoldsaveraged Navier–Stokes. The effect of angle of attack on the flow structure over the general aircraft is also studied, and it is found that the dominated frequency associated with the vortex shedding process decreases with increasing angle of attack.  相似文献   

11.
Based on the finite volume method, the flow past a two-dimensional circular cylinder at a critical Reynolds number (Re = 8.5 × 105) was simulated using the Navier-Stokes equations and the γ-Reθ transition model coupled with the SST k ? ω turbulence model (hereinafter abbreviated as γ-Reθ model). Considering the effect of free-stream turbulence intensity decay, the SST k ? ω turbulence model was modified according to the ambient source term method proposed by Spalart and Rumsey, and then the modified SST k ? ω turbulence model is coupled with the γ-Reθ transition model (hereinafter abbreviated as γ-Reθ-SR model). The flow past a circular cylinder at different inlet turbulence intensities were simulated by the γ-Reθ-SR model. At last, the flow past a circular cylinder at subcritical, critical and supercritical Reynolds numbers were each simulated by the γ-Reθ-SR model, and the three flow states were analyzed. It was found that compared with the SST k ? ω turbulence model, the γ-Reθ model could simulate the transition of laminar to turbulent, resulting in better consistency with experimental result. Compared with the γ-Reθ model, for relatively high inlet turbulence intensities, the γ-Reθ-SR model could better simulate the flow past a circular cylinder; however the improvement almost diminished for relatively low inlet turbulence intensities The γ-Reθ-SR model could well simulate the flow past a circular cylinder at subcritical, critical and supercritical Reynolds numbers.  相似文献   

12.
In this paper, the Spectral-Element Dynamic Model (SEDM), suited for Large-Eddy Simulation (LES) using Discontinuous Finite Element Methods (DFEM), is assessed using unstructured meshes. Five test cases of increasing complexity are considered, namely, the Taylor-Green vortex at Re =?5000, the turbulent channel flow at Reτ =?587, the circular cylinder in cross-flow at ReD =?3900, the square cylinder in cross-flow at ReD =?22400 and the channel with periodic constrictions at Reh =?10595. Various discretization parameters such as the grid spacing, polynomial degree and numerical flux are assessed and very accurate results are reported in all cases. This consistency in the results demonstrates the versatility of the SEDM approach and its ability to gage the actual resolution and quality of the mesh and, accordingly, to introduce an amount of sub-grid dissipation which is adapted to the spatial discretization considered.  相似文献   

13.
A study is carried out to analyze the mixed convection flow and heat transfer inside a lid-driven triangular conduit under the effects of micro-gyration boundary conditions. The micropolar constitutive equation characterizes the fluid inside the cavity. The lower boundary is at a uniform temperature and sliding in its plane with constant velocity u0, while the inclined walls are cold. Dual cases are considered here, namely the intense concentration (d) and the weak concentration of microelements (\(m = 0.5\)). The governing nonlinear equations are simulated employing the Galerkin finite element method, where the pressure term is handled via the Penalty approach. Using the numerical data, graphical results are produced to illustrate the effects of physical parameters. Specifically, this refers to the effects of the Grashof number (Gr), Prandtl number (Pr), Reynolds number (Re) and vortex viscosity parameter (K) on the streamlines, mid-section velocity profiles, temperature contours, and local and average Nusselt numbers on the cold and heated boundaries of the conduit. Particular emphasis is given on the identification of the set of parameters for which simultaneous symmetry in streamlines and isotherms prevails. The grid independence test is also performed by comparing the average Nusselt numbers (on the hot and cold boundaries of the conduit) for various mesh sizes, and the optimal solution is found. Moreover, the results are also benchmarked with the previously published data.  相似文献   

14.
The flow structure and heat exchange in the zone of interference between an inclined shock and the surface of a flat plate are investigated experimentally and theoretically as functions of many parameters, the interference being studied in both the presence and the absence of bluntness of the leading edge. The experiments were carried out at Mach numbers M = 6, 8, and 10 and the Reynolds numbers Re L , calculated using the plate length L = 120 mm and the free-stream parameters, varied over the range from 0.24 ? 106 to 1.31 ? 106. The bluntness radius of the leading edge of the plate, the intensity of the impinging shock, and its location with respect to the leading edge were varied. The numerical simulation was carried out by solving the complete two-dimensional Navier-Stokes equations and averaged Reynolds equations using the q-ω turbulence model. The laminar boundary layer became turbulent inside the separation zone induced by the shock. It is shown that the plate bluntness significantly reduces the heat exchange intensity in the interference zone, this effect intensifying with increase in the Mach number.  相似文献   

15.
On the basis of an asymptotic analysis of the Navier-Stokes system of equations for large Reynolds numbers (Re → ∞), the plane incompressible fluid flow near a surface having a convex corner with a small angle 2θ* is investigated. It is shown that for θ* = O(Re?1/4), in addition to the known solution that describes a separated flow completely localized in a thin “viscous” sublayer of the interaction region near the corner point, another solution corresponding to a flow with a developed separation zone is possible. For θ 0 = Re1/4 θ* = O(1), the longitudinal dimension of this zone varies from finite values up to values of the order of Re?3/8. The nonuniqueness of the solution is established on a certain range of variation of the parameter θ 0. The dependence of the drag coefficient on the angle θ* is found.  相似文献   

16.
Vortex solitons in the spatially modulated cubic–quintic nonlinear media are governed by a (3+1)-dimensional cubic–quintic nonlinear Schrödinger equation with spatially modulated nonlinearity and transverse modulation. Via the variable separation principle with the similarity transformation, we derive two families of vortex soliton solutions in the spatially modulated cubic–quintic nonlinear media. For the disappearing and parabolic transverse modulation, vortex solitons with different configurations are constructed. The similar configurations of vortex solitons exist for the same value of \(l-k\) with the topological charge k and degree number l. Moreover, the number of the inner layer structure of vortex solitons getting rid of the package covering layer is related to \((n-1)/2+1\) with the soliton order number n. For the disappearing transverse modulation, there exist phase azimuthal jumps around their cores of vortex solitons with \(2\pi \) phase change in every jump, and any two jumps one after another realize the change in \(\pi \). For the parabolic transverse modulation, all phases of vortex soliton exist k-jump, and every jump realizes the change in \(2\pi /k\); thus, k-jumps totally realize the azimuthal change in \(2\pi \) around their cores.  相似文献   

17.
The direct Monte Carlo simulation method is used for investigating the effect of the thermal accommodation coefficient α E on the relation for the Knudsen layer in the presence of intensive subsonic condensation. It is shown that the deviation of α E from unity may significantly affect the flow parameters, in particular, Mlim, the Mach number value limiting for subsonic condensation. It is shown that a decrease in α E leads to an increase in Mlim (Mlim < 1) if the relative flow temperature (ratio of the outer Knudsen layer boundary to the surface temperature) T < 1 and to a decrease in Mlim if T > 1. It is shown that for mirror reflection of molecules from the surface this effect may intensify.  相似文献   

18.
We perform a finely resolved Large-eddy simulation to study coherent vortical structures populating the initial (near-nozzle) zone of a pipe jet at the Reynolds number of 5300. In contrast to ‘top-hat’ jets featured by Kelvin-Helmholtz rings with the non-dimensional frequency S t≈0.3?0.6, no high-frequency dominant mode is observed in the near field of a jet issuing from a fully-developed pipe flow. Instead, in shear layers we observe a relatively wide peak in the power spectrum within the low-frequency range (S t≈0.14) corresponding to the propagating helical waves entering with the pipe flow. This is confirmed by the Fourier transform with respect to the azimuthal angle and the Proper Orthogonal Decomposition complemented with the linear stability analysis revealing that this low-frequency motion is not connected to the Kelvin-Helmholtz instability. We demonstrate that the azimuthal wavenumbers m=1?5 contain the most of the turbulent kinetic energy and that a common form of an eigenmode is a helical vortex rotating around the axis of symmetry. Small and large timescales are identified corresponding to “fast” and “slow” rotating modes. While the “fast” modes correspond to background turbulence and stochastically switch from co- to counter-rotation, the “slow” modes are due to coherent helical structures which are long-lived and have low angular velocities, in agreement with the previously described spectral peak at low S t.  相似文献   

19.
In the slow flows of a strongly and nonuniformly heated gas, in the continuum regime (Kn → 0) thermal stresses may be present. The theory of slow nonisothermal continuum gas flows with account for thermal stresses was developed in 1969–1974. The action of the thermal stresses on the gas results in certain paradoxical effects, including the reversal of the direction of the force exerted on a spherical particle in Stokes flow. The propulsion force effect is manifested at large but finite temperature differences between the particle and the gas. This study is devoted to the thermal-stress effect on the drag of a strongly heated spherical particle traveling slowly in a gas for small Knudsen numbers (M ~ Kn → 0), small but finite Reynolds numbers (Re ≤ 1), a linear temperature dependence of the transport coefficients µ ∝ T, and large but finite temperature differences ((T w ? T )/T M8 ~ 1). Two different systems of equations are solved numerically: the simplified Navier-Stokes equations and the modified Navier-Stokes equations with account for the thermal stresses.  相似文献   

20.
Assessment of three regularization-based and two eddy-viscosity-based subgrid-scale (SGS) turbulence models for large eddy simulations (LES) are carried out in the context of magnetohydrodynamic (MHD) decaying homogeneous turbulence (DHT) with a Taylor scale Reynolds number (Reλ) of 120 and a MHD transition-to-turbulence Taylor-Green vortex (TGV) problems with a Reynolds number of 3000, through direct comparisons to direct numerical simulations (DNS). Simulations are conducted using the low-magnetic Reynolds number approximation (Rem<<1). LES predictions using the regularization-based Leray- α,LANS- α, and Clark- α SGS models, along with the eddy viscosity-based non-dynamic Smagorinsky and the dynamic Smagorinsky models are compared to in-house DNS for DHT and previous results for TGV. With regard to the regularization models, this work represents their first application to MHD turbulence. Analyses of turbulent kinetic energy decay rates, energy spectra, and vorticity fields made between the varying magnetic field cases demonstrated that the regularization models performed poorly compared to the eddy-viscosity models for all MHD cases, but the comparisons improved with increase in magnitude of magnetic field, due to a decrease in the population of SGS eddies within the flow field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号